
Connection Science
Vol. 18, No. 2, June 2006, 189–206

Discovering communication
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What kind of motivation drives child language development? This article presents a computational
model and a robotic experiment to articulate the hypothesis that children discover communication as
a result of exploring and playing with their environment. The considered robotic agent is intrinsically
motivated towards situations in which it optimally progresses in learning. To experience optimal
learning progress, it must avoid situations already familiar but also situations where nothing can be
learned. The robot is placed in an environment in which both communicating and non-communicating
objects are present. As a consequence of its intrinsic motivation, the robot explores this environment in
an organized manner focussing first on non-communicative activities and then discovering the learning
potential of certain types of interactive behavior. In this experiment, the agent ends up being interested
by communication through vocal interactions without having a specific drive for communication.
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1. Introduction

What drives child language development? Why does the child spend so much efforts learning
the complex know-how necessary to master language? These questions have led to multiple
controversial debates. First, it should be stressed that these questions are not always relevant
for certain approaches of language acquisition. Certain theories view language acquisition as
primarily a passive automatic process. Children learn language simply by being exposed to
it. With such explanations, the motivational aspect of language learning is secondary. Passive
theories of language acquisition have been exposed to many criticisms arguing that learning
language passively (e.g. by statistical induction) is too hard a problem (Gold 1967). In general,
these have led to strong nativist theories supposing that language can actually be learned
passively because a language-specific learning machinery (the Language Acquisition Device)
is already available at birth (Pinker and Bloom 1990).

In contrast with passive approaches to language acquisition, another set of explanations
argue that language acquisition is fundamentally an active process. Children pay attention to
linguistic events and practice skills for expressing themselves because they are motivated to do
so. As they progress, they get interested in different types of linguistic skills. Therefore, they
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learn to master the complexity of language in an incrementally progressive manner. However,
to be convincing, such explanations must clarify the drives that underlie this development. Is
it a general incentive or a motivation specific to communication? Is it extrinsic or intrinsic?
We will quickly review these different hypotheses.

Are children born with a specific motivation for social interaction or communication? Such
a motivation would be innate, selected by natural selection. This hypothesis raises new kind
of questioning at the phylogenetic level: what are the benefits of communication for humans?
How can we explain the emergence of the skills underlying language from an evolutionary
perspective? Contrary to what is often assumed, the evolutionary advantage of developing lin-
guistic skills is far from being straightforward (Dessalles 1998, Gintis et al. 2001). Therefore,
making the hypothesis that an innate motivation for communication exists because it leads
to a selective advantage is not unproblematic. Moreover, the hypothesis of an innate drive
for communicating fails to explain why children develop increasingly complex communica-
tion skills. Children do not simply learn basic skills for interacting, they develop amazingly
complex competence for expressing themselves and understanding others.

Do children communicate because they try to achieve other basic needs? In such a case, the
development of communication skills would be the result of various types of extrinsic moti-
vation like getting food or emotional comfort (Rolls 1999). Again, this functional perspective
fails to explain the open-ended nature of children’s linguistic development. Children are not
satisfied with their initial success in learning to talk. They continuously explore new dimen-
sions of the language faculty and tackle new challenges such as: how to segment the speech
stream into meaningful linguistic units; how to structure the world into linguistically relevant
events and objects; how to handle the mapping between such perceptual structuring and the
lexical and syntactic level. Can such sophistication emerge simply for fulfilling basic needs?

A third kind of explanation would be that children develop communication skills because it
is inherently interesting for them. In such a case, their development would be driven by a form
of intrinsic motivation (White 1959, Deci and Ryan 1985), not specific to communication but
that would nevertheless lead to the development of communication skills. Play and curiosity-
driven exploration would be at the origin of this development. The hypothesis that we would
like to explore in this article belongs to this third kind.

Our approach is based on computational developmental models and robotics experiments.
It is different but complementary with models of language formation studied so far. In the last
10 years, a growing number of researchers have taken up the interdisciplinary challenge to
understand language formation and evolution through computational and robotic models (see
Cangelosi and Parisi 2002, Kirby 2002, Steels 2003 for general overviews of the field). For
many researchers who participate in this collective effort, one objective is to show that the
general learning mechanisms could account for several aspects of language without having
to suppose the existence of innate specific preadaptations. Successful experimental and the-
oretical results were obtained in the domains of lexicon formation (Hutchins and Hazlehurst
1995, Steels 1996, Shoham and Tennenholtz 1997, Ke et al. 2002, Smith et al. 2003, and
Kaplan 2005), phonological evolution (De Boer 2001, Oudeyer 2005, 2006) and grammatical
aspects of language acquisition (Steels and Neubauer 2000). Other experiments stressed the
role of situatedness and social learning for language acquisition using robotic experiments
(Steels and Kaplan 2000). Some experiments combined these two trends in unified set-ups by
showing how a population of robotic agents could collectively negotiate a shared lexicon in
which each word was grounded in private perceptual categories (Steels and Kaplan 1999).

These models have allowed us to clarify important aspects of language dynamics, which
were based on two important underlying assumptions. In all these models, (1) communicative
and non-communicative behaviors are separated from the start, and (2) agents are (either explic-
itly or implicitly) motivated for successful linguistic communication. As we have previously
discussed, such assumptions raise some issues. Why would an agent be motivated for linguistic



Discovering communication 191

communication if it does not have the know-how for communicating yet? What would drive
it towards developing appropriate skills?

A new family of models, based on the concept of intrinsic motivation, recently developed in
the field of developmental robotics may help us to explore these aspects of language develop-
ment. Architectures using intrinsic motivation systems are particular types of reinforcement
learning architectures in which rewards are provided not from external means but through
internal evaluation (Schmidhuber 1991, Thrun 1995, Herrmann et al. 2000, Barto et al. 2004,
Marshall et al. 2004, Kaplan and Oudeyer 2004, Oudeyer et al. 2005a, Schmidhuber 2006). In
these systems, some situations (e.g. particular sensorimotor contexts) are judged to be intrin-
sically more interesting than others by the system (for instance, because they are novel or on
the contrary familiar) and the agent seeks them out for that purpose. A major challenge for this
research area is to design intrinsic motivation systems that would permit some form of open-
ended task-independent organized development (Weng et al. 2001, Oudeyer et al. 2005a). Such
a system should result in the autonomous organization of interesting developmental sequences.

In this article, we consider a robotic agent intrinsically motivated towards situations in
which it progresses in learning. To experience progress, the agents must avoid situations
already familiar but also situations where nothing can be learned. We have shown in another
series of experiments how such a model can permit the organization of complex develop-
mental sequences (Oudeyer and Kaplan 2004, Oudeyer et al. 2005a). Here, we report on an
experiment in which the robot is placed in an environment in which both communicating and
non-communicating objects are present. We will show that by looking for progress niches,
situations in which learning progress is maximal, the robot explores this environment in an
organized manner, focussing first on non-communicative activities but then discovering the
intrinsic richness of certain types of interactive behavior. In this experiment, the robot will
end up being interested by communication, and it will focus its activity on vocal interactions,
without having a specific drive for communication.

The next section presents in detail the intrinsic motivation system that we use, and the
following one describes an experimental setup and the results which are obtained. This system
provides a metaphor to articulate the hypothesis that children may discover communication
simply by being motivated by exploring and playing with their environment. This experiment
should be seen as a ‘tool for thought’ for this developmental scenario. Moreover, it is only
a first step. In particular, the setup does not yet address issues related with the open-ended
nature of linguistic development. As we will argue in the end of the article, many challenges
are yet to be tackled to address convincingly this aspect in a robotic setup.

2. The intrinsic motivation system: Intelligent Adaptive Curiosity

In this part, we will give a technical overview of the intrinsic motivation system that we use
and of the cognitive architecture in which it is integrated.

2.1 Curiosity as the search for learning progress

The intrinsic motivation system that we use is called Intelligent Adaptive Curiosity (IAC).
Figure 1 represents the architecture in which it is integrated. It is based on a module that
can compute the interestingness of all sensorimotor situations in terms of what we call the
‘learning progress’. Learning progress is defined as the amount of progress in the quality
of anticipations that the robot performs in similar situations. So it relies, on one hand, on a
system of categorization of the sensorimotor space which is able to group situations on the
basis of their similarities and, on the other hand, on a system which is able to evaluate the
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Figure 1. The intrinsic motivation-based architecture used in the playground experiment (see figure 2 and section 3).

evolution of performances in anticipations for each group of situations. An interesting feature
of the system is that this grouping of situations in what we will call regions is unsupervised
and incremental. This means that initially the robot considers that all situations belong to the
same group (there is only one region), and progressively, it will split this group/region into
several groups/regions to refine its categorization, and so on. The robot is motivated to explore
preferentially regions in which its performances in predicting the consequences of its actions
increase maximally fast. The exploration of these regions leads the robot to gain experience in
them, and when a certain amount of experience is reached in a region, then the region is split.

This mechanism implies that the robot is able to evaluate its own performances in anticipa-
tion in a given region of the sensorimotor space. This evaluation is based on the computation
of its errors in predicting the sensorimotor flow. Indeed, the robot is equipped on one hand
with a set of sensors and motors, whose values evolve continuously, and on the other hand
with a learning system, which tries to predict the values of the sensors in the near future,
given the values of the sensors and the motors in the close past. After each prediction has been
made, the robot waits for the actual measure of the predicted sensors and computes its error
in prediction. The smoothed evolution of this error in each of the sensorimotor regions is the
basis of the evaluation of learning progress: learning progress in a given region is defined as
the inverse of the decrease of this smoothed error in the close past in this region.
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Finally, at each time step, the robot decides which values to be sent to its motors by measuring
the current sensory context (which can include proprioceptive information), imagining possible
sets of motor values, and for each of these imagined situations, it evaluates the corresponding
learning progress. Then, most of the time it chooses a set of motor values for which its
evaluation of the associated learning progress is maximal, but sometimes it also chooses a
random set of motor values, which helps it avoid being stuck in local minima.

It has to be noted that with this system, the interestingness of each situation will possibly
evolve with time. Indeed, for example, if a situation is not predictable initially, then it becomes
progressively more predictable, thanks to the learning mechanisms, and then reaches a plateau
of high predictability, this means, for the robot, that it will be interesting for a while because its
errors in prediction decrease, but then in the second phase, the situation will not be interesting
anymore because the errors in prediction do not decrease anymore.As a consequence, the value
function of the robot is highly non-stationary. This is what will allow the self-organization
of behavioral and cognitive stages into a developmental sequence. Moreover, this allows the
robot not to be interested by situations which are trivial or too easy from its point of view
(where it is always very good at predicting) or by situations which are not learnable given
its cognitive abilities (where its predictions will always be bad). This enables the robot to
continuously control the complexity of its behavior so that it is increasing progressively. We
will now describe in more details the IAC algorithm.

2.2 Technical details: computing similarity-based learning progress

2.2.1 Sensorimotor apparatus. The robot has a number of real-valued sensory channels
si(t), which are summarized here by the vector S(t). A sensory channel typically measures
the continuous flow of values of a sensor, but it can also be a measure which aggregates the
continuous flow of values of a set of sensors. The robot has also a set of motor channels which
it can set in order to control its actions. The motor channels take real number values denoted
mi(t), which we summarize using the vector M(t). A motor channel typically sets the value of
a physical motor, but it can also set a value which is used by a low-level controller which itself
controls a set of motors and actuators (such as the angle of arm movement in the experimental
setup which we will describe in the following section). We denote the sensorimotor context
SM(t) as the vector which summarizes the values of all the sensory and the motor channels at
time t (it is the concatenation of S(t) and M(t)). In all that follows, there is an internal clock in
the robot which discretizes the time, and the values of all channels are updated at every time
step. What is crucial is that the robot does not know the ‘meaning’ of the sensory and motor
channels: for the robot, each of these channels is like an unlabeled wire from which it can
measure some values (the sensory channels) or send some values (the motor channels). This
means, in particular, that if, for example, the robot is equipped with one touch and two auditory
sensory channels, it does not even know that two of them are of the same kind and correspond
to the same modality. This kind of organization will be learned progressively by the robot. It is
interesting to note that here we tackle the problem of finding structure in a sensorimotor space
about which one knows only the unstructured and unlabeled list of sensors and actuators.
Some alternative and complementary solutions to this problem are presented by Philipona
et al. (2003), Hafner and Kaplan (2005), Stronger and Stone (2006), Olsson et al. (2006) and
Kuipers et al. (2006).

2.2.2 Regions. There is a mechanism which incrementally splits the sensorimotor space
(defined as the set of possible values for SM(t)) into regions on the basis of these exemplars.
A region is an implicit definition of a sub-part of the sensorimotor space, such as ‘the part
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which is defined by a value of the third sensor channel lower than 0.7 and a value of the
second motor channel higher than 0.9’. Moreover, IAC equips the robot with a memory of
all the exemplars (SM(t), S(t + 1)) which have been encountered by the robot. Each region
stores all the exemplars which it covers. These exemplars will then be used in both the splitting
mechanism and in the predictions made by the experts (see subsequently). At the beginning,
there is only one region R1. Then, when a criterion C1 is met, this region is split into two
regions. This is done recursively. A simple criterion C1 can be used: when the number of
exemplars associated with the region is above a threshold T , then split. T is a parameter
of the algorithm. This criterion specifies when the robot splits a region, and so refines its
categorization in this part of the sensorimotor space, when it has acquired a certain amount of
experience in it. Moreover, it is computationally efficient.

When a splitting has been decided, then another criterion C2 must be used to find out how
the region will be split. A possible criterion is one that splits the set of exemplars into two
sets so that the sum of the variances of S(t + 1) components of the exemplars of each set,
weighted by the number of exemplars of each set, is minimal. This allows to split the sets in
a relatively balanced manner and in the middle of zones of high non-linearity. This criterion
is not crucial to the algorithm and could possibly be replaced by another one.

Recursively and for each region, if the criterion C1 is met, the region is split into two regions
with the criterion C2. When a region is split into two regions, the parent region is deleted,
so that the organization of the set of regions is flat. Yet, each region stores all the cutting
dimensions and the cutting values that were used in its generation as well as in the generation
of its parent region. As a consequence, when one wants to find the region associated with a
given sensorimotor context SM(t), it is easy to find out: it is the one for which SM(t) satisfies
all the cutting tests (and there is always a single region which corresponds to each SM(t)).
This is illustrated in figure 2.

Figure 2. The sensorimotor space is iteratively and recursively split into sub-spaces, which we call ‘regions’. Each
region Rn is responsible for monitoring the evolution of the error rate in the anticipation of the consequences of
the robot’s actions if the associated contexts are covered by this region. This list of regional error rates is used for
learning progress evaluation. As the robot is preferentially interested to explore regions where the learning progress
is maximal, these regions will be those that are going to be split most often. For example in this figure, after the initial
region R1 has been split into R2 and R3, the robot discovers that there is more potential learning progress in R2, and
thus will explore this region most of the time. This has the consequence that it will quickly gain experience in it,
and because of the criterion C1, the region R2 will be split into two new regions R4 and R5. This corresponds to a
refinement of the categorization system of the robot in this part of the sensorimotor space. Then we see that R2 was
in fact quite heterogeneous in terms of learning complexity and that initially at least R5 is more interesting than R4
in terms of learning progress.
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2.2.3 Experts. Each region Rn is associated with a learning machine En, called an expert.
A given expert En is responsible for the prediction of S(t + 1), given SM(t), when SM(t)
is a situation which is covered by its associated region Rn. Each expert En is trained on the
set of exemplars which is possessed by its associated region Rn. An expert can be a neural
network, a support-vector machine or a Bayesian machine, for example. When a region is
split, two child experts are created as fresh experts and re-trained with the exemplars that
their associated region has inherited. This is not necessarily computationally heavy if one uses
memory-based learning methods such as nearest neighbors algorithms as we will do in the
next section. Indeed, in this case, no re-training needs to be done.

2.2.4 Evaluation of learning progress. The partition of the sensorimotor space into dif-
ferent regions is the basis of our regional evaluation of learning progress. Each time an action
is executed by the robot in a given sensorimotor context SM(t) covered by the region Rn,
the robot can measure the discrepancy between the sensory state S̃(t + 1) that the expert En
predicted and the actual sensory state S(t + 1) that it measures. This provides a measure of
the error of the prediction of En at time t + 1:

en(t + 1) = ‖S(t + 1) − S̃(t + 1)‖2

This squared error is added to the list of past squared errors of En, which are stored in
association to the region Rn. We denote this list as

en(t), en(t − 1), en(t − 2), . . . , en(0)

Note that here t denotes a time which is specific to the expert, and not to the robot: this means
that en(t − 1) might correspond to the error made by the expert En in an action performed
at t − 10 for the robot and that no action corresponding to this expert was performed by the
robot since that time. These lists associated to the regions are then used to evaluate the learning
progress associated to each region. Indeed, the learning progress associated with region Rn

is defined as the inverse of the derivative of the smoothed curve of the errors in predictions
made by En in the recent past. Mathematically, the computation involves two steps.

• The mean error rate in prediction is computed at t + 1 and t + 1 − τ :

〈en(t + 1)〉 =
∑θ

i=0 en(t + 1 − i)

θ + 1

〈en(t + 1 − τ)〉 =
∑θ

i=0 en(t + 1 − τ − i)

θ + 1

where τ is a time window parameter typically equal to 15 and θ is a smoothing parameter
typically equal to 25.

• The actual decrease in the mean error rate in prediction is defined as D(t + 1) = 〈en(t +
1)〉 − 〈en(t + 1 − τ)〉. We can then define the actual learning progress as

L(t + 1) = −D(t + 1)

Eventually, when a region is split into two regions, both new regions inherit the list of past
errors from their parent region corresponding to the exemplars they have inherited, which
allows them to make evaluation of learning progress right from the time of their creation.
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2.2.5 Action selection. We have now in place a prediction machinery and a mechanism
which provides an internal reward (positive or negative) r(t) = L(t) each time an action is
performed in a given context, depending on how much learning progress has been achieved.
The goal of the intrinsically motivated robot is then to maximize the amount of internal reward
that it gets. Mathematically, this can be formulated as the maximization of future expected
rewards (i.e. maximization of the returns), that is E{∑t≥tn

γ t−tn r(t)}, where γ (0 ≤ γ ≤ 1)

is the discount factor which assigns less weight on the reward expected in the far future.
This formulation corresponds to a reinforcement learning problem (Sutton and Barto 1998),

and thus, the elaborated techniques developed in this field can be used to implement an
action selection mechanism which will allow the robot to maximize future expected rewards
efficiently. Yet, the purpose of this article is to focus on the study and to understand the
consequences in terms of behavior of the learning progress definition that we presented.
Using a complex reinforcement machinery brings biases which are specific to a particular
method, especially concerning the way they process delayed rewards. While using such a
method with intrinsic motivation systems will surely be useful in the future and is in fact an
entire subject of research, as illustrated by the work described in Barto et al. (2004), we will
make a simplification which will allow us not to use such sophisticated reinforcement learning
methods, so that the results we will present in the experiment section can be interpreted more
easily. This simplification consists in having the system try to maximize only the expected
reward it will receive at t + 1, i.e. E{r(t + 1)}. This permits us to avoid problems related to
delayed rewards and makes it possible to use a simple prediction system which can predict
r(t + 1), and so evaluate E{r(t + 1)}, and then be used in a straightforward action selection
loop. The method we use to evaluate E{r(t + 1)} given a sensory context S(t) and a candidate
action M̃(t), constituting a candidate sensorimotor context S̃M(t) covered by region Rn,
is straightforward but revealed to be efficient: it is equal to the learning progress that was
achieved in Rn with the acquisition of its recent exemplars, i.e. E{r(t + 1)} ≈ L(t − θRn

),
where t − θRn

is the time corresponding to the last time region Rn, and expert En processed
a new exemplar.

On the basis of this predictive mechanism, one can deduce a straightforward mechanism
which manages action selection in order to maximize the expected reward at t + 1.

• In a given sensory S(t) context, the robot makes a list of the possible values of its motor
channels M̃(t) which it can set; if this list is infinite, which is often the case because we
work in continuous sensorimotor spaces, a sample of candidate values is generated.

• Each of these candidate motor vectors M̃(t) associated with the sensory context S(t) makes
a candidate S̃M(t) vector for which the robot finds out the corresponding region Rn; then
the formula we just described is used to evaluate the expected learning progress E{r(t + 1)}
that might be the result of executing the candidate action M̃(t) in the current context.

• The action for which the system expects the maximal learning progress is chosen with a
probability 1 − ε and executed, but sometimes a random action is selected (with a probability
ε). In the following experiments, ε is typically 0.35.

• After the action has been executed and the consequences measured, the system is updated.

3. Discovering object affordances and communication using the same mechanism

We are now going to present an experimental setup called the Playground Experiment. This
is an extension of the setup described by Oudeyer et al. (2005b) in which the sensorimotor
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space is larger. This involves a physical developmental robot capable of moving its arms,
neck, cheeks and producing sounds, which is installed onto a play mat with various toys as
well as with a pre-programmed ‘adult’ robot which can respond vocally to the developing
robot in certain conditions. The robots that we use are Sony AIBO robots, as shown on
figure 3. We have developed a web site which presents pictures and videos of this setup:
http://playground.csl.sony.fr. We are now going to describe what is the sensorimotor space
of the developing robot.

3.1 Sensorimotor space

3.1.1 Motor channels. The robot is equipped with seven continuous motor channels which
can control various actuators (figure 4):

• two motor channels which control the pan and tilt of the robot’s head, whose values at time
t are, respectively, denoted P(t) and T (t) and which are real numbers between 0 and 1;

• two motor channels which control the movement of the front arms: Ba(t), which controls
the angle of a bashing movement (the value is a number between 0 and π radians, and when
Ba(t) ≤ π/2, the left arm moves, whereas when Ba(t) ≥ π/2, the right arms moves), and
Bs(t), which controls the speed of the bashing movement (which is a real number between
0 and 1);

• one motor channel D(t) which controls the angle of the middle joint of the front legs, which
allows the robots to kneel down and make an opening–closing cycle of its cheek and which
is a real number between 0 and 1;

• two motor channels which control the vocalizations of the robot: Pmi(t), which sets the
mean pitch of the vocalization, and Lm(t), which controls the length of the vocalization
(both are scaled real numbers between 0 and 1).

Moreover, for each motor channel, a resting position is defined, and the robot can send the
value −1, which provokes the setting of the corresponding channels in these rest positions.

Figure 3. The playground experiment.
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Figure 4. The sensorimotor channels.

For example, for the channels Pmi(t) and Lm(t), if one of them takes the value −1, then no
sound is produced. Also note that while some motor channels control directly some motors
on the AIBO, such as P(t) and T (t), some other channels control coordinations of activations
of several motors at the same time, for example, Ba(t) and D(t). Nevertheless, the robot does
not know initially that there are different kinds of motor channels and that they are linked to
different kinds of actuators.

To summarize, choosing an action consists in setting the values of the seven-dimensional
continuous vector M(t):

M(t) = (P (t), T (t), Ba(t), Bs(t), D(t), Pmi(t), Lm(t))

3.1.2 Sensory channels. The robot is equipped with five sensory channels, two of which
are continuous and three of which are binary, corresponding to various sensors.

• Ov(t) is a binary sensory channel indicating the presence (or absence) of a visual tag within
the field of view. This is based on the use of the video camera which is on the head of the
AIBO. These visual tags were put near the objects in the play mat.

• Bi(t) is a binary sensory channel indicating the presence (or absence) of an object in the
mouth of the AIBO. This uses the cheek sensor.
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• Os(t) is a binary sensory channel indicating whether something is oscillating or not in the
close range of the infra-red distance sensor which is on the nose of the AIBO.

• Pi(t) is a continuous sensory channel which indicates the mean pitch of the sound which
is heard when a sound is actually perceived by the AIBO microphone, which has a con-
tinuous value between 0 and 1 when a sound is perceived and is −1 when there are no
sounds.

• L(t) is a continuous sensory channel which indicates the duration of the sound which is
heard when a sound is actually perceived by the AIBO microphone, which has a continuous
value between 0 and 1 when a sound is perceived and is −1 when there are no sounds.

The robot does not know initially that there are different kinds of sensory channels, and, for
example, does not know that some are binary or continuous (it treats them all as continuous
a priori) or that some are related to vision and some other to audition, for example.

To summarize, the sensory vector S(t) is the five-dimensional vector:

S(t) = (Ov(t), Bi(t), Os(t), Pi(t), L(t))

3.1.3 External environment. On the play mat, there are two toys and an ‘adult’ robot that
the ‘child’ robot can detect as objects using its Ov sensor (but the visual sensor only tells the
robot whether or not there is an object in front of it and it does not say whether it is a toy or
another robot, for example). There is one ‘elephant ear’ integrated in the play mat that the robot
can possibly bite but that does not produce perceivable reactions when it is bashed. There is a
suspended soft toy that it can bash with the arm but is too far for biting. Finally, there is one
pre-programmed ‘adult’ robot which imitates the sounds produced by the developing robot
(with a different voice which shifts the pitch down) only when the developing robot is looking
in the direction of the adult robot while it is vocalizing. The adult robot is far enough from the
developing robot, so that it is not possible to bite or bash it.

3.1.4 Initial ignorance of sensorimotor affordances. More generally, initially the robot
knows nothing about sensorimotor affordances. For example, it does not know that the values
of the object visual detection sensor are correlated with the values of its pan and tilt. It does
not know that the values of the Bi(t) or Os(t) can become 1 only when the values D(t), Ba(t)

and Bs(t) are coordinated in a certain manner and when there is an object in the direction
of the action. It does not know that some objects are more prone to provoke changes in the
values of Bi(t) and Os(t) when only certain kinds of actions are performed in their direction.
It does not know, for example, that to get a change in the value of the Os(t) channel, bashing
in the correct direction is not enough because it also needs to look in the right direction (as
its infra-red distance sensor is on the front of its head). These remarks make it clear that a
random action selection would lead most often to uncoordinated movements which produce
no effect on the environment.

3.1.5 Action perception loop. To summarize, the mapping that the robot learns is

f : SM(t) = (P (t), T (t), Ba(t), Bs(t), D(t), Pmi(t), Lm(t), Ov(t), Bi(t), Os(t),

Pi(t), L(t))

(−→ S(t + 1) =
(

˜Ov(t + 1), ˜Bi(t + 1), ˜Os(t + 1), ˜Pi(t + 1), ˜L(t + 1)
)
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The robot is equipped with the IAC system and thus chooses its actions according to the
potential learning progress that it can provide to one of its experts, using the algorithms
described in the previous section.

3.2 Results

During an experiment, which lasts approximately half-a-day, we store all the flow of values
of the sensorimotor channels, as well as a number of features which help us to characterize
the dynamics of the robot’s development. Indeed, we measure the evolution of the relative
frequency of the use of the different actuators: the head pan/tilt, the arm, the mouth and the
sound speakers (used for vocalizing). We also constantly measure the direction in which the
robot is turning its head.

We will now show details of an example for a typical run of the experiment. All the curves
corresponding to the measures we described are in figure 5.

Figure 5. Top curves: relative frequency of the use of different actuators (head pan/tilt, arm, mouth, sound speaker).
Bottom curves: frequency of looking towards each object and in particular, towards the ‘adult’ pre-programmed
robot.
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Table 1. Stages in robot’s developmental sequence.

Description Stage 0 Stage 1 Stage 2 Stage 3

Individuation of actions − + + +
Biting and bashing with the right affordances − − + +
Focussed vocal interactions with the adult − − − +

From the careful study of these curves, augmented with the study of the trace of all the
situations that the robot encountered, we observe that (1) there is an evolution in the behavior
of the robot; (2) this evolution is characterized by qualitative changes in this behavior; (3)
these changes correspond to a sequence of more than two phases of increasing behavioral
complexity, i.e. we observe the emergence of several successive levels of behavioral patterns;
(4) the robot reaches a behavioral pattern in which it focusses on vocalizing towards the ‘adult’
pre-programmed robot and on listening to the vocal response that it triggers. Moreover, it is
possible to summarize the evolution of these behavioral patterns using the concept of stages,
where a stage is here defined as a period of time during which some particular behavioral
patterns occur significantly more often than random and did not occur significantly more
often than random in previous stages. This definition of a stage is inspired from that of Piaget
(1952). These behavioral patterns correspond to combinations of clear deviations from the
mean in the curves in figure 5. This means that a new stage does not imply that the organism
is now only doing new things, but rather that among its activities, some are new. Here are the
different stages which are visually denoted in figure 5 (table 1).

3.2.1 Stage 0. The robot has a short initial phase of random exploration and body babbling.
This is because during this period the sensorimotor space has not yet been partitioned in
significantly different areas. During this stage, the robot’s behavior is equivalent to the one we
would obtain using a random action selection: we clearly observe that in the vast majority of
cases, the robot does not even look or act towards objects, and thus its action on the environment
is quasi-absent. This is due to the fact that the sensorimotor space is vast and only in some
small sub-parts some non-trivial learnable phenomena can happen given its environment.

3.2.2 Stage 1. Then there is a phase during which the robots begin to focus successively on
playing with individual actuators, but without the adequate affordances: first there is a period
where it focusses on trying to bite in all directions (and stops bashing or producing sounds),
then it focusses on just looking around, then it focusses on trying to bark/vocalize towards all
directions (and stops biting and bashing), then to bite, and finally to bash in all directions (and
stops biting and vocalizing). Sometimes the robot not only focusses on a given actuator, but
also looks in a focussed manner towards a particular object at the same time: yet, there is no
affordance between the actuator used and the object it is looking at. For example, the developing
robot tries to bite the ‘adult’ robot or to bark/vocalize towards the elephant ear. Basically, in
this stage, the robot is learning to decompose its motor space into differentiable sub-parts
which correspond to the use of different kinds of actuators. This results from the fact that
using one actuator at a time makes the SM(t) (−→ S(t + 1) easier to learn, and so at this stage
in its development, this is what the robot judges as being the largest niche of learning progress.

3.2.3 Stage 2. Then, the robot comes to a phase in which it discovers the precise affordances
between certain action types and certain particular objects: it is now focussing either on trying
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to bite the biteable object (the elephant ear) and on trying to bash the bashable object (the
suspended toy). Furthermore, the trace shows that it does actually manage to bite and bash
successfully quite often, which is an emergent side effect of IAC and is not a pre-programmed
task. This focus on trying to do actions towards affordant objects is a result of the splitting
mechanism of IAC, which is a refinement of the categorization of the sensorimotor space that
allows the robot to see that, for example, there is more learning progress to be gained when
trying to bite the biteable object that when trying to bite the suspended toy or the ‘adult’ robot
(indeed, in that case, nothing happens because they are too far, and so the situation is always
very predictable and does not provide a decrease in the errors in prediction.).

3.2.4 Stage 3. Finally, the robot comes to a phase in which it now focusses on vocalizing
towards the ‘adult’ robot and listens to the vocal imitations that it triggers. Again, this is a
completely self-organized result of the intrinsic motivation system driving the behavior of the
robot: this interest for vocal interactions was not pre-programmed and results from exactly
the same mechanism which allowed the robot to discover the affordances between certain
physical actions and certain objects. The fact that the interest in vocal interaction appears
after the focus on biting and bashing comes from the fact that this is an activity which is a
little bit more difficult to learn for the robot, given its sensorimotor space and the playground
environment: indeed, this is due to the continuous sensory dimensions which are involved in
vocalizing and listening, as opposed to the binary sensory dimensions which are involved in
biting and bashing.

We made several experiments and each time we got a similar structure in which a
self-organized developmental sequence pushed the robot towards activities of increasing com-
plexity, particularly towards the progressive discovery of the sensorimotor affordances as
well as the discovery for vocal interactions. In particular, in the majority of developmental
sequences, there was a transition from a stage where the robot acted with the wrong affordances
to a stage where it explored physical actions with the right affordances and then to a stage
where it explored and focussed on vocal interactions. Nevertheless, we also observed that two
developmental sequences are never exactly the same, and the number of stages sometimes
changes a bit or intermediary stages are sometimes exchanged. It is interesting to note that
this is also true for children: for example, some of them learn to crawl before they can sit and
vice versa. We are now trying to make precise statistical measures about the set of develop-
mental sequences that are generated in our experiments (which takes time because one single
experiment takes nearly 1 day) in order to understand better how particular environment and
embodiment conditions lead to the formation of recurrent developmental stages.

4. Discussion

The experiment that we presented is not intended to be a model of child development. It must
be seen as a metaphorical system that can help us think of the complex dynamics that result
from intrinsic motivation like maximizing learning progress. In order to characterize such
kinds of developmental trajectories, we have introduced elsewhere the notion of ‘progress
niches’ (Kaplan and Oudeyer 2005). Progress niches are situations, neither too predictable
nor too difficult to predict, optimally interesting given the developmental stage reached by the
agent. Therefore, progress niches are not intrinsic properties of the environment. They result
from a relation between a particular environment, a particular embodiment (sensors, actuators,
features detectors and techniques used by the prediction algorithms) and a particular time in the
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developmental history of the agent. Once discovered, progress niches progressively disappear
as they become more predictable.†

In the present case, the notion of progress niche can help us to think about the following
hypothetical developmental scenario in which ‘the discovery of communication’ takes place.
If children indeed show some form of intrinsic motivation for maximizing learning progress,
they will get successively interested in playing with and manipulating objects or situations of
increasing complexity, the choice of which is determined by their potential returns in terms
of learning progress. At a certain point in their development, children should discover that
interacting with others, for example, by producing and listening for sounds, is an important
source of learning progress, a new progress niche. This discovery will make them more and
more interested and involved in social activities.

Early communication situations can indeed be considered as progress niches. Parental scaf-
folding plays a critical role for making the interaction with the child predictable and adapted
to the child’s competences (Schaffer 1977). Numerous studies concerning motherese can be
viewed as support for this hypothesis. As the children progress, they get confronted with
updated challenges, new progress niches sustaining their interest for linguistic communica-
tion. However, things get more complex at this stage and go beyond the scope of the model
presented in this article. For instance, it could be argued that the space that children explore
changes as they develop new competences. Children shift their interest from linguistic forms
(e.g. when playing to imitate vocalizations) to linguistic content (the meaning of vocaliza-
tions). This later aspect is not present in our experiment. Many issues remain to be solved to
capture convincingly such increases in complexity in an artificial setup. In particular, in this
article, we have shown how an intrinsic motivation system could allow a robot to self-organize
its exploration of a given sensorimotor space. But the structure of this sensorimotor space was
fixed and did not evolve. Some other work in developmental robotics investigates this question
of how new and more complex representations can be bootstrapped by an autonomous robot
(Stronger and Stone 2006, Schlesinger 2006, Olsson et al. 2006, Gold and Scassellati 2006,
Provost et al. 2006, Kuipers et al. 2006). An interesting continuation of the work presented
in this article could be to use intrinsic motivation systems to guide the exploration of such
evolving representational spaces.

What then is the added value of our experiment? The setup illustrates how in the absence
of a dedicated channel for communication and specific motivation for interaction, primitive
linguistic communication can nevertheless be rewarding and actively practiced. However,
one could argue that there is actually a dedicated channel for communication, as the only
possible effect of vocalizations in our setup is to trigger vocal responses by the other robot.
This is true, but the crucial point is that the robot does not know about it. Initially, its sound
production system is indistinguishable from the rest of its motor system, from its point of view.
It has to discover that using this modality leads to qualitatively different result. Moreover, the
developing robot does not know that the ‘adult’ robot is a special entity: indeed, it initially
considers it to be just another object among others.

Then, can the simple imitation routine demonstrated in this experiment really be considered
linguistic communication? No, it is rather a primitive form of vocal interaction; but, our point
is that more complex linguistic communication shares the same kind of special dynamics
that distinguishes it from interaction with simple objects. In our setup, learning to predict the

†The concept of progress niches is related toVygotsky’s zones of proximal development, where the adult deliberately
challenges the child’s level of understanding. Adult push children to engage in activities beyond their current mastery
level, but not too far beyond so that they remain comprehensible (Vygotsky 1978). We could interpret the zone of
proximal development as a set of potential progress niches organized by the adult in order to help the child learn. But
it should be clear that independently of adults’ efforts, what is and what is not a progress niche is ultimately defined
from the child’s point view.
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effects of the vocal outputs is different from predicting the effects of the motor commands
directed towards non-communicating objects. We believe that communication situations, in
general, are characterized by such kinds of different learning dynamics. However, this does
not mean that they are always more difficult to learn than learning how to interact with objects
(simple forms of imitative behavior have been argued to be present just after birth (Meltzoff
and Gopnick 1993, Moore and Corkum 1994)).

Finally, as in this experiment, the environment and the embodiment of the robot have been
designed to make communication special given the intrinsic motivation system of the robot.
How is this different from an innate motivation for communication? The crucial difference is
that in our system, the cognitive machinery as well as the motivation system are not specific to
communication. From a phylogenetic perspective, the evolution of a motivation for optimizing
learning progress, which is essentially linked to behaviors of play and exploration, is much
easier to justify than the evolution of a specific motivation for communication.

As illustrated in this experiment, computational and robotic approaches may shed new light
on the particular role played by intrinsic motivation in complex developmental processes.
We have presented a setup to explore a scenario on the basis of the hypothesis that children
may discover communication through a general process of motivated exploration. However,
it should be clear that we do not suggest that maximizing learning progress is the only
motivational principle driving children during their development. Development certainly
results from the interplay between a complex set of drives, particular learning biases, as well
as embodiment and environmental constraints. Our hope is that this form of experiment can
help to develop our intuitions and to better understand the different components that contribute
to shaping the dynamics of child development.
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