ICS : 95.020

TITRE FRANÇAIS : Guide d’application de la démarche de personnalisation en environnement mécanique

TITRE ANGLAIS: Guidelines for the Tailoring Process for the Mechanical Environment in an armament program

ANALYSE : Ce guide explique la mise en œuvre de la démarche de personnalisation en environnement mécanique. Il vient en appui à l’utilisation des normes du domaine. Parmi lesquelles se trouve en particulier la norme OTAN STANAG 4370 qui couvre les publications interalliées sur les conditions et essais en environnement (AECTP).

DESCRIPTEURS (mots-clés) : Démarche de personnalisation – Environnement – Mécanique – Profil de vie – Environnement mécanique – synthèse en environnement - Spécification de Besoin – Dossier de définition – Dossier de justification de la définition - Qualification -

MODIFICATIONS (principales modifications par rapport à l’édition antérieure) :

<table>
<thead>
<tr>
<th>Édition</th>
<th>Date</th>
<th>Nature de l’évolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>1er juillet 2009</td>
<td>Édition originale</td>
</tr>
</tbody>
</table>

NORME DÉFENSE

PR NORMDEF 0101

Édition 01
JUILLET 2009
DOCUMENTS ABROGÉS PAR LA PRÉSENTE ÉDITION :

<table>
<thead>
<tr>
<th>Référence</th>
<th>Date</th>
<th>Objet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ENTITÉ RÉDACTRICE :
CIN EG

ENTITÉ DE MAINTENANCE :
CIN EG

AUTORITÉ(S) D’APPROBATION (référence de l’approbation) :

Le contenu de ce guide est la propriété intellectuelle du Ministère de la Défense. Il est provisoirement diffusé par l’ASTE dans une version provisoire non encore approuvée par le CND de manière à recueillir les remarques éventuelles des utilisateurs sur son contenu.
SOMMAIRE

GLOSSAIRE DES ACRONYMES ET LISTE DES SYMBOLES 8

OBJET DU DOCUMENT .. 9

1. INTRODUCTION ... 10
 1.1. Préambule .. 10
 1.2. Périmètre de la démarche de personnalisation 11
 1.3. Enjeux ... 11
 1.4. Démarche de Prise en Compte de l’Environnement Mécanique (PCEM): ... 12
 1.4.1. Cadre d'emploi de la PCEM .. 12
 1.4.2. Etape 1 – Etablissement du profil de vie système 13
 1.4.3. Etape 2 - Détermination des données réelles d’environnement associées à chaque situation 13
 1.4.4. Etape 3 - Détermination de l'environnement retenu 14
 1.4.5. Etape 4 - Établissement du programme de qualification (démonstration par le calcul, l'essai ou la simulation) ... 14
 1.5. Responsabilités dans l’application de la PCEM 15
 1.6. Les sévérités d’essais forfaitaires et personnalisées 16

2. PRINCIPALES METHODES DE PERSONNALISATION 19
 2.1. Méthodes par enveloppe de DSP .. 19
 2.2. Avantages et inconvénients de la méthode par enveloppe de DSP ... 23
 2.3. Méthode par équivalence de Dommage par Fatigue : 23
 2.4. Avantages de la méthode par équivalence des dommages 24
 2.5. Comparaison des hypothèses entre la méthode d’enveloppe des DSP et la méthode d’équivalence des dommages ... 25

3. ETAPE 1 - ETABLISSEMENT DU PROFIL DE VIE ENVIRONNEMENT 26
 3.1. Contenu et exploitation d’un profil de vie environnement 26
 3.2. Exemples plus détaillés d’établissement d’un profil de vie environnement ... 28

4. ETAPE 2 - CARACTÉRISATION DE L’ENVIRONNEMENT RÉEL 29
 4.1. Caractérisation des agents d’environnement 29
 4.1.1. Caractérisation de leur nature .. 29
 4.1.2. Caractérisation de la Classe de signaux d’un agent d’environnement mécanique 29
 4.1.3. Caractérisation par rapport à l’origine des données 29
 4.1.4. Caractérisation en fonction du niveau d’assemblage et de la fonction 30
 4.2. Définition des grandeurs physiques .. 30
 4.3. Critères et outils qui permettent de valider la mesure 30

5. ETAPE 3 - DÉTERMINATION DE L’ENVIRONNEMENT A SIMULER 31
 5.1. Principes et lois d’équivalences en termes de spectres de réponse extrême et de dommage par fatigue ... 31
 5.2. Hypothèses retenues pour le comportement des matériels 32
 5.3. Le choix du modèle rhéologique de comportement des matériels 32
 5.4. Définitions des spectres SRC, SRE, SRX et SDF ... 33
 5.4.1. Spectre de réponse au choc (SRC) .. 33
5.4.2. Spectre de réponse extrême (SRE) ... 33
5.4.3. Spectre de réponse à risque de dépassement (SRX) .. 34
5.4.4. Spectre de dommage par fatigue (SDF) .. 37
5.4.5. Choix de la méthode de calcul la plus appropriée : DSP ou signal temporel 39
5.5. Prise en compte de la variabilité des données d'environnement 40
5.6. Prise en compte de la variabilité des caractéristiques mécaniques des matériaux 41
 5.6.1. Défaillance par contrainte extrême ... 41
 5.6.2. Défaillance par fatigue .. 41
5.7. Le coefficient de garantie: formulation et principe de calcul 41
 5.7.1. Interaction de deux distributions normales ... 43
 5.7.2. Interaction de deux lois log-normales ... 44
 5.7.3. Interaction de deux lois de Weibull ... 46
5.8. Synthèse d'un ensemble de situations d'un profil de vie .. 49
 5.8.1. Traitement de chaque événement .. 49
 5.8.2. Critères de regroupement des événements d'une situation ou synthèse de plusieurs situations .. 50
 5.8.3. Synthèse des événements d'une situation ... 50
 5.8.4. Synthèse de plusieurs situations .. 52
5.9. Réduction de la durée des essais ... 53
5.10. Validation de la réduction de durée .. 54
5.11. Retour inverse à la DSP à partir du SDF ... 56
5.12. Retour inverse à la DSP à partir du SRE ... 57
5.13. Cas particulier : prise en compte d'un environnement de type « chocs répétés » 57
 5.13.1. Réduction du nombre de chocs et augmentation de leur amplitude pour respecter le dommage par fatigue .. 57
 5.13.2. Vibrations aléatoires équivalentes à une série de chocs identiques 58
6. ETAPE 4 - RÉDACTION DU PROGRAMME DES ESSAIS .. 61
 6.1. Sévérités des essais figurant dans les documents normatifs 61
 6.2. Contenu d'un programme d'essais ... 63
 6.2.1. Liste des fascicules applicables .. 63
 6.2.2. Choix des modes opératoires .. 63
 6.2.3. Etablissement des sévérités ... 63
 6.2.4. Chronologie des essais ... 63
 6.2.5. Nombre d'exemplaires ... 63
 6.2.6. Sanctions .. 64
 6.3. La nécessité et le calcul du facteur d'essai .. 65
 6.3.1. Nécessité du facteur d'essai ... 65
 6.3.2. Calcul du facteur d’essai .. 65
 6.4. Remarque sur la spécification des chocs par un SRC .. 68
 6.5. Possibilité de découper une bande en sous bandes (généralement deux) 69
 6.6. Les bâtis d’essai ... 69
 6.6.1. Bâti de chargement / machine d’essai ... 69
 6.6.2. Tables de générateur de vibrations ... 70
 6.6.3. Chargement ponctuel mais à travers un couplage flexible 70
 6.6.4. Excitation mono axial et multi point .. 70
 6.6.5. Excitation multiaxial et Mono point ... 70
 6.6.6. Excitation multiaxial et multi point ... 70
 6.7. Questions relatives à l’aspect triaxial de l’environnement reel 71
 6.7.1. Excitation triaxiale monopoint : ... 71
7. **RECOMMANDATIONS SUR LE CHOIX DES VALEURS DES PARAMETRES** 76
 7.1. Choix de la valeur b .. 76
 7.1.1. Valeurs usuelles ... 76
 7.1.2. Valeur préconisée .. 77
 7.2. Choix de l’amortissement du système étalon .. 77
 7.3. Choix des valeurs K et C ... 79
 7.4. Choix du coefficient d’exagération 79
 7.5. Choix de la probabilité de dépassement 79

8. **ANNEXES** ... 80
 8.1. Représentation de la courbe de Wöhler 80
 8.1.1. Courbe de WÖHLER : essais de fatigue avec contrainte imposée 80
 8.1.2. Modélisation analytique de la courbe de WÖHLER 80
 8.2. Coefficient de garantie / facteur d’essai : abaque 82
 8.3. Calcul du SRE .. 104
 8.4. Rappel historique ... 112
 8.5. Validation des mesures .. 113
 8.5.1. Critères à caractère général ... 113
 8.5.2. Critères à caractère spécifique .. 114
 8.6. Synthèse de l’environnement sans prise en compte du SDF 115
 8.6.1. Illustration sur un signal non stationnaire des inconvénients de la méthode des enveloppes de DSP.115
 8.6.2. Cas d’un emport sous avion .. 118
 8.6.3. Cas de transports logistiques ou de transports ou d’emports tactiques 122
 8.7. Détermination des données qui caractérisent les agents d’environnement : leur origine et le niveau d’assemblage auquel elles se rapportent .. 122
 8.8. Prise en compte des limitations des moyens d’essais 129
 8.8.1. Limitations liées à la complexité de l’environnement vibratoire réel 129
 8.8.2. Limitations liées aux performances des moyens de génération des vibrations et des chocs 129
 8.8.3. Limitations liées aux moyens de pilotage 130
 8.8.4. Limitations résultant de la difficulté à recréer l’interaction dynamique entre matériel et son porteur 130
 8.8.5. Limitations dues à la difficulté à recréer les vraies conditions initiales 130
 8.8.6. Autres Limitations ... 130
 8.9. Compléments sur l’organisation du programme d’essai 131
 8.9.1. Travaux relatifs au procédé d’essai 131
 8.9.2. Réalisation du dispositif d’essai 135
 8.9.3. Validation de la conception de l’essai 135
 8.9.4. Coûts et délais ... 135
 8.9.5. Réalisation de l’essai .. 135
 8.9.6. Revue de contrat d’exécution .. 135
 8.10. Réduction de durée d’essai - Exemple 135
8.11. Aide au choix des sanctions .. 138
 8.11.1. Code de sanction ... 139
 8.11.2. Conduite à tenir en cas d’incidents pendant les essais .. 139
8.12. Négliger ou non la composante statique .. 141

9. EXEMPLE SUR PROFIL DE VIE SIMPLIFIÉ ... 142
 9.1. Données ... 142
 9.2. Caractérisation de la Situation de Transport Logistique par Voie Routière S1 144
 9.2.1. Cas de l’événement S1.1 : Choc de Manutention ... 144
 9.2.2. Cas de l’événement S1.2 : Vibrations Mauvaise Route .. 145
 9.2.3. Cas de l’événement S1.3 : Vibrations Bonne Route .. 152
 9.2.4. Synthèse des événements S1.1, S1.2 et S1.3 .. 159
 9.3. Caractérisation de la Situation de Transport Logistique par Voie Routière S2 164
 9.4. Caractérisation de la Situation de Transport Logistique par Voie Aérienne S3 166
 9.5. Caractérisation de la Situation de Transport Logistique par Voie Ferrée S4 171
 9.6. Caractérisation de la Situation de Transport Tactique sur Tout Chemin S5 175
 9.7. Caractérisation de la Situation de Transport Tactique sur Tout Terrain S6 177
 9.8. Synthèse des deux Situations de Transport Tactique S5 et S6 .. 179
 9.9. Synthèse des quatre Situations de Transport Logistique S1, S2, S3 et S4 182
 9.9.1. Synthèse des deux Situations de Transport Logistique S3 et S4 182
 9.9.2. Synthèse des trois Situations de Transport Logistique S1, S2 et S3/S4 186
 9.10. Spécifications d’essais associée au canon automoteur soumis au profil d’emploi simplifié 189
 9.10.1. Spécification d’essais associée aux Situations de Transport Tactique S5 et S6 189
 9.10.2. Spécification d’essais associée aux Situations de Transport Logistiques S1 à S4 ... 196

10. EXEMPLE 2 : PROFIL DE VIE D’UN SYSTEME D’ARMES .. 203
 10.1. Etape 1 : Recensement des situations ... 204
 10.2. Etape 2 : Détermination des données réelles associées aux situations 207
 10.3. Etape 3 : Synthèse des situations .. 210
 10.3.1. Paramètres pour la synthèse ... 210
 10.3.2. Analyse des vibrations aléatoires .. 210
 10.3.3. Analyse des chocs ... 220
 10.4. Etape 4 : Etablissement du programme de qualification ... 224
 10.4.1. Programme d’essai pour les vibrations aléatoires ... 224
 10.4.2. Programme d’essai pour les chocs ... 228
 10.4.3. Comparaison spécification d’essai en DSP et spectre DSP initiaux 234

11. EXEMPLE 3 : ELABORATION D’UN PROFIL DE VIE D’UN
 EQUIPEMENT DU DOMAINE CIVIL ... 237

REFERENCES .. 260

INDEX .. 264

FIGURES .. 269
<table>
<thead>
<tr>
<th>Abbr.</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>CdCF</td>
<td>Cahier des Charges Fonctionnel</td>
</tr>
<tr>
<td>CDG</td>
<td>Centre De Gravité</td>
</tr>
<tr>
<td>CG</td>
<td>Coefficient de Garantie</td>
</tr>
<tr>
<td>CVr</td>
<td>Coefficient de Variation à la résistance</td>
</tr>
<tr>
<td>CVE</td>
<td>Coefficient de Variation à l'environnement</td>
</tr>
<tr>
<td>DD</td>
<td>Dossier de Définition</td>
</tr>
<tr>
<td>DDL</td>
<td>Degré De Liberté</td>
</tr>
<tr>
<td>DP</td>
<td>Direction de Programme (ou un représentant)</td>
</tr>
<tr>
<td>DSP</td>
<td>Densité Spectrale de Puissance</td>
</tr>
<tr>
<td>EF</td>
<td>Eléments Finis</td>
</tr>
<tr>
<td>EMx</td>
<td>Etat-major (de l'Armée de l'Air, de l’Armée de Terre, de la Marine, des Armées)</td>
</tr>
<tr>
<td>(ou un représentant)</td>
<td></td>
</tr>
<tr>
<td>FE</td>
<td>Facteur d'Essai</td>
</tr>
<tr>
<td>FCMx</td>
<td>Fiche de Caractéristique Militaire (Exploratoire, Provisoire, de Référence)</td>
</tr>
<tr>
<td>MMR</td>
<td>Dissymétrie du signal</td>
</tr>
<tr>
<td>MOI</td>
<td>Maître d’Œuvre Industriel</td>
</tr>
<tr>
<td>OEM</td>
<td>Objectif d’Etat-major</td>
</tr>
<tr>
<td>PCEM</td>
<td>Prise en Compte de l’Environnement Mécanique dans un programme d’armement</td>
</tr>
<tr>
<td>PM</td>
<td>Pas de quantification</td>
</tr>
<tr>
<td>RNPA</td>
<td>Référentiel Normatif des Programmes d’Armement</td>
</tr>
<tr>
<td>SDF</td>
<td>Spectre de Dommage par Fatigue</td>
</tr>
<tr>
<td>SNR</td>
<td>Signal sur Bruit</td>
</tr>
<tr>
<td>SRC</td>
<td>Spectre de Réponse au Choc</td>
</tr>
<tr>
<td>SRE</td>
<td>Spectre de Réponse Extrême</td>
</tr>
<tr>
<td>SRX</td>
<td>Spectre de Réponse à risque</td>
</tr>
<tr>
<td>STB</td>
<td>Spécification Technique du Besoin</td>
</tr>
</tbody>
</table>
OBJET DU DOCUMENT

L’objet de ce document est de constituer un guide pour la « Prise en Compte de l’Environnement mécanique dans un Programme d’Armement » (PCEM). Il entre dans le cadre de la démarche actuelle de la Défense consistant à réduire les coûts des matériels produits, mis et maintenus en service dans les armées.

Il s’adresse aux :

- directeurs et officiers de programme (équipe intégrée), spécificateurs,
- bureaux d'études, bureaux de calcul, ... établis et industriels qui y trouveront un référentiel en la matière.

L’environnement mécanique pris en compte dans la démarche de ce guide ne se limite pas en principe explicitement aux vibrations, aux chocs mécaniques, à l’accélération constante ou à la vibration acoustique simulés habituellement par des ensembles générateurs de vibrations, des machines à chocs, des centrifugeuses ou des chambres acoustiques réverbérantes. Cependant dans les faits, tout se passe comme si c’était le cas parce que les méthodes d’essais normalisées auxquelles on se réfère pour l’établissement du programme d’essais sont celles qui font appel à ces moyens d’essais.

La réalité de l’environnement mécanique fait quant à elle intervenir des sollicitations de natures très variées : fluctuations aérodynamiques réparties ou localisées et dont les effets sont difficiles à simuler autrement que dans une veine d'air ou en soufflerie, fatigue mécanique de dispositifs intervenant dans les mises à poste et dont les effets ne sont pas représentées par des essais sur générateur de vibration ou une machine à chocs.

Il faut donc conserver un peu de recul et admettre que bien que le terme d'environnement mécanique soit général, le présent guide ne couvre, à l’exception du chapitre sur le profil de vie système, que la partie des environnements mécaniques qui fait appel aux moyens d'essais les plus courants à savoir principalement les ensembles générateurs de vibration, les machines à choc, les centrifugeuses et les chambres réverbérantes acoustiques.

L’environnement mécanique dont il est question dans ce guide concerne les vibrations, les chocs et les accélérations statiques et quasi statiques et les vibrations acoustiques dont la prise en compte est pertinente dans le cadre des essais de qualification. Ces essais sont contractuels et sont destinés à faire la preuve par l’industriel de la bonne tenue du matériel par rapport à l’environnement attendu du profil de vie vis-à-vis du donneur d’ordre.

Ils ne devraient pas conduire à des reprises de dimensionnement structural à haut niveau d’assemblage, comme c’est le cas pour les essais statiques et de fatigue en début de développement. Les défauts auxquels conduisent les essais en environnement mécanique ne sont pas facilement prédictibles et comme de plus elles n’ont généralement pas un caractère dimensionnant, il n’y a pas eu de liens traditionnellement forts entre le calcul et les essais d’environnement, contrairement aux essais statiques et de fatigue structurale basse fréquence (« low cycle » ou « malaxage structural »).

Pour les environnements spéciaux non couverts dans les recueils de méthodes d’essais normalisées, le maître d’œuvre pourra toujours engager des essais spécifiques qui pourront rester des essais de validation des fonctions techniques (essais de conception) ou deviendront des essais de validation des fonctions de service (essais de qualification). La reproductibilité de la méthode non normalisée mise en œuvre le cas échéant devra avoir été validée par le maître d’œuvre.
1. INTRODUCTION

1.1. Préambule

La démarche d'écriture des spécifications d'essais, telle que présentée dans les normes, DEF STAN 0035 (GB) [DEF **], MIL STD 810 (US) [MIL **], ou la norme OTAN STANAG 4370 [OTA **] qui a suivi, concernait la personnalisation des « essais en environnement », définie en fonction du Profil de Vie du matériel.

Un « Essai en environnement » comporte une épreuve et des mesures de fonctionnement associées. Il est utile de rappeler qu'historiquement les « Essais d'Environnement » étaient définis de manière forfaitaire par l'intermédiaire des essais de « réception (ou recette) des matériels ». Plus tard est apparu le concept de « Qualification » en fin de développement. Dans la pratique, la majorité des essais, même personnalisés, intervenait postérieurement aux choix de définition, ce qui conduisait à aborder trop tardivement des problèmes qui auraient dû être résolus auparavant, avec des conséquences importantes sur les coûts et délais.

La prise en compte des premiers résultats de « mesures in situ » rendait par ailleurs inévitable l'exécution de certains essais « personnalisés », non prévus initialement dans les Programmes, d'où des dépassements systématiques de budgets et de délais. La meilleure manière d'éviter ces écueils est de prendre en compte les facteurs liés à l'environnement dès le début du développement du matériel.

Ceci a justifié une évolution visant à compléter la démarche initiale de « Personnalisation des Essais » par diverses actions mises en œuvre au cours du cycle de vie du produit, depuis le début du développement jusqu'au retrait du service : cette démarche correspond à la notion de « PRISE EN COMPTE DE L'ENVIRONNEMENT DANS UN PROGRAMME D'ARMEMENT »

Le choix délibéré a été fait, dans le présent guide, de privilégier les bases et concepts techniques plutôt que la démarche organisationnelle. Comme une bonne partie de ces fondements techniques se retrouvait dans la démarche de personnalisation des essais, c’est cette démarche qui a structuré le présent document.

La démarche de Prise en Compte de l’Environnement Mécanique (PCEM) objet de ce guide s’appuie sur le concept de personnalisation. Lorsqu’on est confronté à un manque de données au début d’un projet, il est toutefois admis de se référer à des valeurs forfaitaires. Cependant, il faudra dès que possible remplacer ces valeurs forfaitaires par des valeurs personnalisées.
1.2. Périmètre de la démarche de personnalisation

La personnalisation est l’art et la manière d’établir une spécification d’essais à partir d’un profil de vie décrit à l’étape 1.

A l’étape 2, on associe à ce profil de vie des données d’entrée supposées déjà validées : tous les aspects relevé des mesures (choix des capteurs, implantation, …), traitement (extraction des chocs du signal vibratoire, moments statistiques d’ordre 3 et 4, tests de stationnarité, …), analyse (calcul des DSP, calcul des SRC,…) et corrections (centrage du temporel, etc.)…doivent avoir été effectuées en amont. Ces actions sont toutes très importantes et peuvent avoir une incidence sur la qualité de la spécification déterminée lors de la personnalisation dans la dernière étape.

Il n’existe pas à ce jour de guide pour la validation des données utilisées en entrée de la personnalisation mécanique. On trouve des éléments disparates dans l’AECTP 200 de la STANAG 4370, et aussi dans les normes nationales actuelles. La 2ème partie de l’AGM de la GAM EG 13 est consacrée au traitement du signal mais aucun guide donnant une vue d’ensemble sur cette question n’est actuellement rédigé.

Cette définition du périmètre de la personnalisation n’a pas été faite dans les normes dont il est question ci-dessus car aucune d’elles n’avait jusqu’alors proposé un chapitre dédié à la personnalisation. On trouve donc dans ces normes l’ensemble des sujets suivants, sans qu’ils aient été compartimentés puisqu’ils ont bien leur place dans le périmètre de ces normes, que ce soit la personnalisation, l’acquisition des données, la correction et la validation des données, les répertoires de données, les effets des agents d’environnement, les méthodes d’essais, la qualité des essais, la justification des sévérités forfaitaires, etc. Cette partition n’a aucun intérêt en soi. Elle est simplement destinée à structurer les différentes tâches à réaliser de manière à présenter plus logiquement les problèmes posés par chacune des actions à effectuer, à présenter les solutions proposées dans chaque cas et à permettre le développement des méthodes et outils nécessaires dans chaque domaine.

1.3. Enjeux

Le domaine couvert par les normes générales d’environnement est celui des contraintes d’environnement mécanique (contraintes, vibrations, chocs, …), climatique (températures, hygrométrie, …) et électromagnétique (agressions et compatibilité électromagnétiques). L’objet de ces normes est d’organiser la relation client – fournisseur afin d’optimiser la prise en compte des environnements dans la conception et réalisation des matériels. Ceci comporte des aspects techniques (comment faire), ainsi que de partage des responsabilités (qui fait quoi).

L’idée directrice des normes générales d’environnement applicables dans le secteur de la défense est de permettre, quand c’est utile, la mise en œuvre de la démarche de personnalisation. Par opposition aux normes civiles (comme la CEI), qui recherchent la standardisation des sévérités, il s’agit d’adapter les spécifications d’un système de manière à satisfaire « au plus juste » les performances recherchées, ce qui est économiquement justifié pour des systèmes réalisés en très petites séries, tels que les systèmes de défense.

A cette idée directrice s’ajoute la volonté de responsabiliser le maître d’œuvre en vue d’atteindre les performances opérationnelles recherchées pour l’ensemble du domaine d’emploi, plutôt que sur un domaine limité, par un nombre d’essais convenus.

C’est ainsi l’industriel maître d’œuvre qui, en matière d’environnement, définit le programme d’essai à tous les niveaux d’assemblage du système et s’engage sur la capacité de ce programme d’essai à démontrer la bonne tenue du système sur l’ensemble du domaine d’emploi. Le rôle du maître d’ouvrage est de préciser et traduire, en termes techniques, le domaine d’emploi indiqué dans la fiche d’expression de besoin « amont ». Par exemple, quand cette fiche indique qu’un avion de chasse doit résister au choc d’appontage, c’est le maître d’ouvrage qui spécifie cette agression à l’entrée système.
Dans ce cadre de responsabilités, les normes « environnement » :
- encadrent la spécification technique et personnalisée du besoin par la maîtrise d’ouvrage,
- guident l’industriel dans la démarche de prise en compte de l’environnement d’une manière adaptée au besoin, ainsi que dans l’élaboration des sévérités d’essais,
- définissent les méthodes d’essai que doit utiliser l’industriel.

Ainsi, les normes d’environnement sont spécifiques des besoins de la Défense et structurent le partage des responsabilités contractuelles associées à cet aspect des programmes d’armement.

1.4. Démarche de Prise en Compte de l’Environnement Mécanique (PCEM):

1.4.1. Cadre d’emploi de la PCEM

Un environnement peut appartenir à trois domaines, définis par la performance effective de la fonction d’un matériel par rapport à la performance attendue. Il n’y donc a pas en soi un domaine d’environnement qui serait normal, un domaine qui serait limite et un domaine qui serait extrême. Ces domaines sont définis par rapport au niveau de performances fonctionnelles attendu et changent donc d’une performance à une autre d’une même fonction ou d’une fonction à une autre.

Un environnement donné peut, selon le matériel et la fonction considérée, la performance attendue de la fonction, appartenir à différents domaines :
- le **domaine normal**, pour lequel la fonction considérée du produit doit être assurée avec les niveaux de performance spécifiés (on parle tantôt de « produit » ou de « matériel » : faire un choix si c’est bien la même chose...),
- le **domaine limite**, pour lequel la fonction considérée du matériel peut présenter une performance dégradée, tout en respectant les exigences de sécurité; cette dégradation devant être réversible lorsque l'on revient dans le domaine normal,
- le **domaine extrême**, pour lequel la fonction considérée du matériel peut présenter une performance dégradée irréversible tout en respectant les exigences de sécurité.

En France, la STB (Spécification Technique de Besoin) environnement (Etapes 1 et 2 de la PCEM telles que définies ci-dessous) émise par la DGA se limite au domaine normal en entrée système. Les autres domaines sont traités par ailleurs dans la STB système.

La démarche de personnalisation en environnement comporte quatre étapes :
- l'étape numéro un consiste à recenser les situations rencontrées au cours de la vie du matériel,
- l'étape numéro deux consiste à déterminer des données réelles d’environnement associées aux agents d'environnement répertoriés dans chaque situation,
- l'étape numéro trois consiste à déterminer (calculer) l’environnement dit retenu,
- l'étape numéro quatre consiste à établir le programme de qualification en environnement (démonstration par le calcul, l'essai ou la simulation).

On distingue les types d’environnement suivants :
- l'environnement réel :
 - l'environnement attendu : c’est l’environnement que l’on décrit dans un cahier des charges,
 - l'environnement spécifié : c’est l’environnement que l’on décrit dans les STB des différents niveaux de l’arborescence du système.
- l’environnement retenu : c'est un point de passage obligé avant de déterminer les sévérités d’essai (que cet essai soit réel ou que l’on se serve de cette sévérité dans un modèle de validation) : il est obtenu en multipliant l’environnement moyen spécifié par le coefficient de garantie, lequel
prend en compte la variabilité de l’environnement. Ce serait la sévérité de l’essai si le matériel en essai avait une variabilité de résistance à l’environnement considéré nulle. En fait, ce n’est jamais le cas,

- **la sévérité de l’essai** : c’est la transformation de l’environnement retenu qui prend en compte la variabilité de résistance du matériel ; elle est obtenue en multipliant l’environnement retenu spécifié par le facteur d’essai.

1.4.2. **Étape 1 – Établissement du profil de vie système**

Cette première étape consiste à analyser le concept d’emploi du matériel depuis sa sortie d’usine jusqu’à son retrait de service (par destruction ou démantèlement) afin de faire une description chronologique des situations rencontrées (y compris l’utilisation et les missions).

Chaque situation est définie par :

- son type : manutention, transport logistique, stockage, emport tactique,
- sa durée,
- son occurrence,
- son lieu géographique,
- des données spécifiques correspondantes :
 - transport logistique : porteur, allures, position du matériel durant le transport,
 - stockage : sous abri à faible ou grande inertie thermique, à ciel ouvert, avec ou sans gerbage,
 - les différents agents d’environnement présents au cours de la situation : agents climatiques, mécaniques, électromagnétiques,

L’établissement du profil de vie environnement est déduit du profil de vie système ; il consiste à identifier et retenir les conditions d’emploi susceptibles de générer des environnements mécaniques « significatifs » que verra le matériel durant sa durée de vie.

1.4.3. **Étape 2 - Détermination des données réelles d’environnement associées à chaque situation**

Les données d’environnement associées à chaque situation doivent être les plus proches du cas réel. Plusieurs cas peuvent être rencontrés :

- l’environnement réel est accessible : des mesures relevées dans des conditions identiques ou proches de celles de la situation considérée sont disponibles ou peuvent être réalisées,
- l’environnement réel peut être estimé : l’environnement peut être estimé à partir de données réelles et de modélisations,
- l’environnement réel est inconnu : dans ce cas, des sévérités forfaitaires sont utilisées. Elles sont constituées par des valeurs correspondant à des situations analogues (avec des porteurs ou des abris identiques) ou des données figurant dans divers documents à caractère normatif.

Remarque : A l’étape 2, les données qui caractérisent les situations sont des données brutes, validées mais non traitées.
1.4.4. Étape 3 - Détermination de l'environnement retenu

L'environnement retenu est déduit de l'ensemble des environnements déterminés à l'étape 2. Les environnements correspondant à certaines situations pourront être regroupés dans le cas où ces situations présenteraient des états, des configurations et des caractéristiques d'environnement similaires. Pour un agent donné, quelques situations pourront être négligées dès lors qu’elles mettent en jeu des contraintes trop faibles pour entraîner un endommagement significatif du matériel.

Remarque : L'étape 3 est l'étape de la synthèse des données : c'est au cours de cette étape que sont mis en œuvre les outils de traitement et de synthèse : SRE, SDF, SRC, SRX, moyennes, écart type, CG (coefficient de garantie).

1.4.5. Étape 4 - Établissement du programme de qualification (démonstration par le calcul, l'essai ou la simulation)

Le programme de qualification (démonstration par le calcul, l'essai, ou la simulation) sera établi à partir de l'environnement retenu, déterminé à l'étape 3 et en tenant compte des éléments suivants :

- existence de procédures d'essais définissant les méthodes à appliquer,
- existence des moyens d'essais avec des performances adéquates,
- état et configuration du matériel,
- chronologie des épreuves (qui doit être cohérente avec celle du profil de vie),
- faisabilité et coût des essais,
- etc.
1.5. **Responsabilités dans l’application de la PCEM**

Les responsabilités dans l’application de la PCEM « au cours du cycle de vie du matériel » sont décrites dans le tableau 1.1.

<table>
<thead>
<tr>
<th>Objectif dans le cadre du programme</th>
<th>Formalisation</th>
<th>Responsabilité</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concept d’emploi :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profil de vie système</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spécifications en environnement (système)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Etape 1</td>
<td>Recensement des situations rencontrées au cours de la vie du matériel</td>
<td>Services étatiques</td>
</tr>
<tr>
<td>Etape 2</td>
<td>Détermination des données réelles d’environnement associées à chaque situation</td>
<td>Services étatiques</td>
</tr>
<tr>
<td>Profil de vie environnement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conception : déclinaison industrielle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Etape 3</td>
<td>Détermination de l’environnement retenu</td>
<td>Maître d’œuvre (et sous-traitants)</td>
</tr>
<tr>
<td>Programme de qualification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Etape 4</td>
<td>Etablissement du programme de qualification (démonstration par le calcul, l’essai ou la simulation)</td>
<td>Maître d’œuvre (et sous-traitants)</td>
</tr>
</tbody>
</table>

Tableau 1-1: Responsabilité dans l’application de la PCEM
1.6. **Les sévérités d’essais forfaitaires et personnalisées**

Mais tout ou partie de la démarche de personnalisation doit être engagée dès lors que :

- les écarts entre l’éventuel profil de vie ayant servi à l’élaboration de la sévérité forfaitaire et le profil de vie réel sont significatifs,
- ou que les données prises en compte pour son élaboration ne sont pas représentatives,
- ou que les conditions de son obtention ne sont pas explicites.

Dans certains cas, on utilise le vocable de sévérité « refuge », dont le caractère même de refuge est explicite (le service rendu est momentané). Les sévérités « refuge » proviennent d’essais en environnement qui ont été appliqués dans le cadre de programmes antérieurs arrivés au terme de leur développement. Les sévérités d’essais refuge ne sont pas associées au profil de vie que cette sévérité d’essai est censée représenter. L’utilisation de sévérité refuge doit s’accompagner de la réalisation de tout ou partie de la démarche de personnalisation.

Toute utilisation abusive de sévérités forfaitaires ou refuge est fortement déconseillée, car pouvant conduire à des matériels sous ou sur dimensionnés.

Toutefois, les sévérités forfaitaires ou refuge permettent :

- d’apporter une solution d’attente de caractérisation de l’environnement réel à l’étape 2 de la démarche,
- de conforter le spécificateur dans son choix des essais et sévérités associées par comparaison entre les résultats de la démarche de personnalisation et ces sévérités forfaitaire ou refuge,

La sévérité forfaitaire (ou refuge) est établie de façon à envelopper les sévérités d’essai correspondant à une famille d’équipements de même type et pour un emploi très générique.

Il est à noter que toutes les normes nationales ou internationales de la Défense : DEF STAN 0035; MIL STD 810 ; STANAG 4370 proposent des sévérités forfaitaires en attendant mieux, à savoir la caractérisation des conditions réelles d'emploi conduisant généralement sur la démarche de personnalisation.

On peut citer :

- En France, le RNPA recommande l’utilisation du STANAG 4370 relatif aux essais en environnement et des publications interalliées couvertes par ce STANAG :
 - AECTP 100 Prise en compte de l'environnement pour les matérielles défenses,
 - AECTP 200 Définition des environnements (en cours de refonte),
 - AECTP 300 Essais en environnement climatique,
 - AECTP 400 Essais en environnement mécanique,
 - AECTP 500 Essais en environnement électrique, électromagnétique (en cours de refonte).

Les AECTP sont téléchargeables sur www.nato.int/docu/standard.htm

- Au Royaume Uni, **la DEF STAN 0035 [DEF **]** indique que :
la sévérité d’essai et les autres paramètres d’essai devraient être fondés sur l'objectif pour lequel est mené cet essai et sur les conditions que le matériau est susceptible de vivre en service. Idéalement les sévérités d'essais devraient être fondées sur les données tirées de mesures dans des conditions de service et d'utilisation,

des sévérités « génériques » pour simuler de nombreuses conditions en service sont présentées dans l'annexe A de la partie 3 de la norme. La sévérité et d'autres paramètres d'essai figurant à l'annexe B doivent être utilisés dans les cas où une simulation plus précise est inutile et où un « sur-test » peut être toléré sans préjudice. Les sévérités de l'annexe B sont destinées à la réalisation d'essais de conception et ne sont pas habituellement appropriées pour l'homologation de type ou pour des essais de qualification.

Aux États-Unis d’Amérique, la MIL STD 810 [MIL **] indique que :

- la personnalisation est considérée comme essentielle. La sélection des méthodes, des procédures et des paramètres d’essais basée sur la personnalisation est décrite dans le paragraphe 4, de la première partie, à l'annexe C,

- les profils de vibration fournis dans les annexes B à E de la méthode 514 « Vibration » résultent généralement d’une combinaison de données provenant de plusieurs sites et de multiples véhicules de même type.

Dans le cadre du CEN CENELEC à Bruxelles,

Il a été mis en place un atelier appelé « Workshop 10 » afin d’élaborer ce qui pourrait devenir par la suite un répertoire normatif européen pour les programmes d’armement [CEN **].

L’environnement mécanique a été pris en compte par l’EG8 et a conduit à un document intitulé : CEN WORKSHOP 10 « Recommendations issued by Expert Group 8 "Environmental engineering" on their selection of standards ».

Ce document passe en revue toutes les étapes de prise en compte de l’environnement et commente les normes mondiales du domaine correspondant (militaires et civiles) en concluant par des recommandations. Pour l’essentiel, la recommandation de l’EG8 est d’utiliser préférentiellement les méthodes du STANAG 4370 ; cela vaut aussi pour les sévérités forfaitaires qu’elle contient.

Au niveau OTAN les AECTP 200 de la norme STANAG 4370 caractérisent différentes situations par des valeurs typiques qui ne sont pas à proprement parler des sévérités d’essais. Les méthodes d’essais de l’AECTP 400 de cette norme proposent des sévérités d’essais tout en recommandant de les mettre à jour à partir de relevés d’environnement réel.

Par opposition aux sévérités forfaitaires, les sévérités d’essais qui ont été adaptées à un cas particulier sont dites « personnalisées ». Leur obtention requiert un travail d’expertise en environnement pour :

- identifier les situations (et/ou événements) pris en compte,
- les positionner dans la portion du profil de vie considéré (chronologie relative des situations),
- déterminer le tableau des occurrences,
- caractériser l’environnement des situations,
- regrouper les situations et/ou événements,
- synthétiser les situations,
- élaborer la sévérité d’essai.
Dans l’élaboration d’un programme d’essais, il faut engager de manière préférentielle une démarche de personnalisation. Les données d’environnement à utiliser peuvent provenir de mesures de l’environnement réel, de l’expérience des programmes antérieurs, de calculs. Lorsque l’on ne dispose pas de ces données (nouvel emploi, nouveau porteur, nouveaux moyens de manutention, etc.), on peut utiliser des données à caractère forfaitaire qui doivent être remplacées dès que possible, quand les informations deviennent disponibles, par des sévérités personnalisées.
2. PRINCIPALES METHODES DE PERSONNALISATION

Les deux méthodes de synthèse des données les plus utilisées pour la personnalisation des essais sont :
- la méthode par enveloppe des densités spectrales de puissance (DSP),
- la méthode par équivalence de dommage par fatigue.

Remarque : Une autre méthode basée sur l’analyse de la propagation de criques ne prend pas en compte le même mécanisme de défaillance car le paramètre qui intervient est le facteur d'intensité de contrainte. La propagation des fissures n’est pas encore (le sera-t-elle un jour ?) prise en compte pour écrire les spécifications d’essais.

2.1. Méthodes par enveloppe de DSP

On trouvera en annexe 8.7 une présentation détaillée de ces méthodes.

Les vibrations aléatoires sont en général représentées par des densités spectrales de puissance (D.S.P.). Considérons une D.S.P. caractérisant un événement particulier, obtenue par enveloppe de plusieurs D.S.P. calculées à partir de plusieurs mesures, éventuellement après application d'un coefficient de garantie défini au § 5.7. Par raison de commodité, pour la description de la spécification obtenue dans les documents et pour l'affichage de la D.S.P. sur le système de pilotage lors de l'essai, on souhaite en général limiter le nombre de points de la D.S.P. à environ une dizaine. Ce besoin était impératif avec les systèmes de pilotage analogiques autrefois utilisés. On pourrait aujourd'hui transférer directement les données par un support informatique sur les systèmes numériques qui sont capables de gérer un plus grand nombre de points de définition de la D.S.P.

La spécification est extraite de la D.S.P. de l'environnement en simplifiant son tracé par des segments de droite.

Figure 2.1: Exemple d'enveloppe de DSP
Cette opération présente au moins deux inconvénients :

- le résultat obtenu n’est pas indépendant de l’opérateur assurant le lissage,
- la tendance étant d’envelopper largement le spectre de référence, la valeur efficace de la spécification qui en est déduite est très souvent beaucoup plus élevée que celle de la D.S.P. d’origine.

Pour réduire l’impact de ces inconvénients, une possibilité consiste à réduire la durée d’application de la spécification en appliquant les règles ci-dessous, de façon à respecter les dommages par fatigue engendrés sur le matériel :

\[
\hat{x}_{\text{eff spécification}} = \hat{x}_{\text{eff réel}} \left(\frac{T_{\text{réel}}}{T_{\text{spécification}}} \right)^{1/b} \\
G_{\text{spécification}} = \left(\frac{T_{\text{réel}}}{T_{\text{spécification}}} \right)^{2/b} \frac{G_{\text{réel}}}{T_{\text{spécification}}}
\]

Où :

- \(\hat{x}_{\text{eff spécification}} \) = valeur efficace de la spécification (vibration aléatoire ou sinusoïdale)
- \(\hat{x}_{\text{eff réel}} \) = valeur efficace de la vibration de l’environnement réel (vibration aléatoire ou sinusoïdale)
- \(G_{\text{spécification}} \) = valeur de la DSP de la spécification (vibration aléatoire)
- \(G_{\text{réel}} \) = valeur de la DSP caractérisant l’environnement réel (vibration aléatoire)
- \(T_{\text{réel}} \) = durée de l’environnement vibratoire réel
- \(T_{\text{spécification}} \) = durée d’application de la spécification
- \(b \) = exposant de la relation de Basquin caractérisant le comportement en fatigue du matériau

Il est souhaitable de vérifier ici que le coefficient d'exagération \(E = \frac{\hat{x}_{\text{eff spécification}}}{\hat{x}_{\text{eff réel}}} \) n'est pas trop élevé.

En général il est recommandé de ne pas prendre un coefficient d'exagération supérieur à 2. Cette règle, très arbitraire, s'appuie sur la remarque que le rapport entre la contrainte instantanée à la rupture et la contrainte limite de fatigue est très souvent situé entre 2 et 2,5 pour beaucoup de matériaux métalliques. Ce coefficient d'exagération pourra être augmenté au delà de deux en se référant à l’environnement limite à tenir par le matériau.

Dans le cas où le calcul conduit à une réduction de temps trop importante et à des contraintes instantanées trop grandes par rapport à celles induites par la vibration réelle, il est alors nécessaire soit de redessiner l’enveloppe en suivant la D.S.P. de plus près, soit d’accroître la durée de l’essai. Le tableau 2.1 résume cette démarche.

Appliquée comme ci-dessus, cette méthode conduit à établir une spécification par événement et donc à multiplier le nombre d'épreuves, puisqu'il y a en général plusieurs situations et plusieurs événements par situation. Afin de réduire ce nombre d'épreuves, on peut utiliser la méthode indiquée dans le tableau 2.2 ci-dessous qui consiste dans l’ordre, à [LAL 02e] :

1. caractériser chaque événement comme précédemment,
2. tracer une enveloppe composée de segments de droite sur chacune des D.S.P. des événements étudiés,
3. calculer la valeur efficace de chacun des spectres tracés en vérifiant que les coefficients d'exagération \(E_i \) obtenus ne sont pas trop élevés,
4. superposer les enveloppes obtenues et tracer une enveloppe (segments de droite) de ces courbes. Cette dernière courbe constitue la spécification recherchée,
5. déterminer la durée réduite de chaque événement à partir de sa durée réelle \(T_{E_i} \) et du coefficient d'exagération \(E_i \),
6. calculer la durée totale à associer à la spécification (une seule D.S.P.) égale à la somme des durées réduites.

Remarque : Les utilisateurs de cette méthode traitent les chocs mécaniques en utilisant les SRC. Les réductions de durée ont été effectuées à partir d'un critère de dommage par fatigue ; la valeur du paramètre \(b \) usuellement utilisée par les utilisateurs de cette méthode est de 5.
Tableau 2-1: Réduction de la durée

<table>
<thead>
<tr>
<th>Profil de vie</th>
<th>Environnement réel</th>
<th>Spécification de durée réelle</th>
<th>Spécification de durée réduite</th>
<th>Spécification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Situation ou événement</td>
<td>Durée</td>
<td>D.S.P.</td>
<td>Accélération efficace</td>
</tr>
<tr>
<td>E₁</td>
<td>T_E₁</td>
<td></td>
<td></td>
<td>x eff₁</td>
</tr>
<tr>
<td>E₂</td>
<td>T_E₂</td>
<td></td>
<td></td>
<td>x eff₂</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau 2-2: Réduction du nombre d'épreuve

<table>
<thead>
<tr>
<th>Profil de vie</th>
<th>Environnement réel</th>
<th>Spécification de durée réelle</th>
<th>Spécification de durée réduite</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Situation ou événement</td>
<td>Durée</td>
<td>D.S.P.</td>
</tr>
<tr>
<td>E₁</td>
<td>T_E₁</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E₂</td>
<td>T_E₂</td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Valeur la plus grande des Eᵢ, pour comparaison à la valeur admissible

\[T = \sum_{i} T_{E_i} \]

\[T_R = \sum_{i} T_{R_i} \]
2.2. **Avantages et inconvénients de la méthode par enveloppe de DSP**

Cette méthode présente les avantages suivants :

- elle est facile à mettre en œuvre, avec peu de moyens de calcul,
- elle autorise des réductions de durées à partir d’un critère de dommage par fatigue (à condition de personnaliser la valeur du paramètre b utilisée),
- elle permet de faire la synthèse de plusieurs situations dont l’environnement vibratoire de chacune est caractérisé par une ou plusieurs densités spectrales en une seule D.S.P.

Néanmoins, elle présente les inconvénients suivants auxquels il faut prêter attention :

- la manière de dessiner l’enveloppe à l’aide de segments de droite est très subjective, les résultats pouvant être très différents selon l’opérateur, (sauf à utiliser un logiciel définissant le gabarit à iso énergie)
- la méthode ne convient pas aux situations non stationnaires, avec la difficulté supplémentaire que la stationnarité dans ce cas risque d’être appréciée dans la totalité de la bande de fréquence,
- cette méthode n’est pas forcément appropriées quand les amplitudes des vibrations de situations différentes sont très disparates, différentes, etc. Par exemple situation en soute bateau et situation en soute avion.

Une enquête entreprise au niveau européen a montré que cette méthode par enveloppe des densités spectrales de puissance est très utilisée (sous sa forme la plus simple, sans réduction de durée) [CEE 02] [LAL 02e] [RIC 90]. Des réflexions sont aussi menées en Grande Bretagne pour tenter de prendre en compte la distribution des valeurs instantanées du signal mesuré [CHA 92].

On trouvera en annexe 8.7 des exemples d’application illustrant cette méthode.

2.3. **Méthode par équivalence de Dommage par Fatigue**

La Méthode par équivalence des dommages par fatigue a été développée et mise en œuvre en France dans les années 1970. À l’origine développée en France au CEA CESTA (Commissariat à l’Énergie Atomique, Centre d’Études Scientifiques et Techniques d’Aquitaine), elle s’est ensuite répandue dans de nombreux établissements.

Elle consiste à rechercher les caractéristiques d’une vibration qui restitue sur un système linéaire à un degré de liberté la contrainte la plus grande observée pendant toute la durée d’application de la contrainte d’environnement ainsi que le dommage par fatigue qui en résulte. Son premier intérêt est d’utiliser le même modèle mécanique que le spectre de réponse au choc (SRC) et donc d’uniformiser les méthodes relatives aux chocs et aux vibrations. Les équivalences environnement réel / spécification s’appuient donc ici sur les deux principaux mécanismes d’endommagement des systèmes mécaniques :

- le dépassement d’une contrainte limite (limite d’élasticité, limite de rupture),
- le dommage par fatigue créé par l’accumulation des cycles de contrainte sur toute la durée d’application de la contrainte d’environnement.

Chaque vibration, quelle que soit sa nature (sinusoïdale, aléatoire, …), est caractérisée par deux spectres :

- un « spectre de réponse extrême » (SRE) qui indique, comme le SRC pour les chocs, la contrainte la plus grande subie par un système mécanique à un seul degré de liberté quand il est soumis à la vibration, en fonction de sa fréquence propre,
un « spectre de dommage par fatigue » (SDF) qui correspond au dommage par fatigue subi par ce même système quand il est soumis à la vibration pendant une durée T donnée, en fonction de sa fréquence propre.

C’est cette méthode dite « par équivalence des dommages » qui est proposée de façon préférentielle dans le présent guide. Elle s’appuie sur les quatre étapes telles qu'elles sont définies au chapitre 1.3. Les chapitres 3, 4, 5 et 6 décrivent de manière détaillée chaque étape de cette démarche de personnalisation.

2.4. Avantages de la méthode par équivalence des dommages

Les avantages de la méthode par équivalence des dommages sont :

- le retour d’expérience existant aujourd’hui est très satisfaisant, et aucune difficulté majeure n’a été rapportée,
- le nombre de points avec lequel les D.S.P. sont calculées n’a pas d’influence sensible sur les S.R.E. et S.D.F. qui en sont issus, sauf pour les premiers points de ces spectres, l’intervalle de fréquence devant être plus petit quand le nombre de points est plus grand,
- la valeur de la surtension choisie pour calculer les S.D.F. et en déduire une spécification n’a aucune incidence sur le résultat, même dans le cas où la durée de l’essai est réduite,
- on peut dire aussi qu’une spécification établie pour Q=10 produit les mêmes effets que les vibrations réelles même si la surtension du spécimen est différente de 10,
- l’utilisation de S.D.F. et S.R.C. à surtension Q variable n’a aucune incidence sur la spécification obtenue (et présente donc peu d’intérêt),
- en l’absence de réduction de la durée des essais, les spécifications calculées par équivalence des dommages sont très peu sensibles à la valeur du paramètre b choisi pour le calcul des S.D.F,
- la méthode d’élaboration des spécifications utilisant les S.R.E. et S.D.F. n’introduit aucune hypothèse supplémentaire par rapport à la méthode par enveloppe des D.S.P,
- bien qu’établies par équivalence des dommages sur un système linéaire à un seul degré de liberté, les spécifications obtenues restent valables pour les structures réelles plus complexes,
- la méthode par équivalence des dommages permet de définir une spécification de vibrations aléatoires stationnaires de même sévérité qu’une vibration réelle non stationnaire,
- il est possible de définir une spécification par une épreuve de nature différente de celle de l’environnement réel (sinus balayé au lieu d’une vibration aléatoire, vibration aléatoire au lieu de chocs répétés en grand nombre, …). Cette transformation est en général peu pertinente, à moins de connaître les valeurs exactes du paramètre b et de la surtension du matériel concerné,
- il est possible de créer directement un signal d’accélération ayant un S.D.F. donné, signal qui pourrait être utilisé pour piloter un moyen d’essai. Comme pour les D.S.P. définies à partir d’un S.D.F., le résultat est peu sensible au choix des paramètres de calcul (surtension, paramètre b, à la réduction de durée près pour ce dernier),
2.5. **Comparaison des hypothèses entre la méthode d’enveloppe des DSP et la méthode d’équivalence des dommages**

Les hypothèses admises pour chacune des deux méthodes (méthode d’équivalence des dommages et méthode par enveloppe des D.S.P) sont réunies à titre de comparaison dans le tableau 2.3.

<table>
<thead>
<tr>
<th>Hypothèse</th>
<th>Méthode par enveloppe des D.S.P, incluant S.R.C.</th>
<th>Méthode d’équivalence des dommages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Courbe de Woehler modélisée par la loi de Basquin</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Hypothèse de cumul linéaire d’endommagement par fatigue : Miner</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Proportionnalité contrainte / déplacement relatif</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Modèle à un degré de liberté</td>
<td>X*</td>
<td>X</td>
</tr>
<tr>
<td>Proportionnalité déplacement relatif réponse / accélération</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Proportionnalité contrainte / déplacement relatif réponse</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

* : uniquement pour le calcul du SRC

Dans le cas de la méthode d’équivalence des dommages, la définition d’un essai de durée réduite, à dommage par fatigue égal, s’appuie sur les expressions du dommage déduites de la loi de Basquin. (cf. §5.4.4)

La méthode par équivalence des dommages utilise les mêmes hypothèses que celles utilisées dans la méthode par enveloppe des DSP. Elles font intervenir le paramètre b (paramètre de la loi de Basquin), ce qui conduit aux mêmes difficultés pour les deux méthodes du choix de sa valeur dans le cas de structures composées de plusieurs matériaux.
3. ETAPE 1 - ETABLISSEMENT DU PROFIL DE VIE ENVIRONNEMENT

L’établissement du profil de vie environnement est déduit du profil de vie système ; il consiste à partir de celui-ci, à identifier et retenir les conditions d’emploi susceptibles de générer les environnements mécaniques « significatifs » que verra le matériel durant sa durée de vie.

Un profil de vie système est un document présentant tous les scenarii et toutes les situations d'utilisation d'un matériel ou d'un système de matériels.

Chronologiquement le profil de vie système est la donnée d'entrée de la méthode de personnalisation des essais de qualification en environnement (climatique, mécanique, …). Ce document identifie les scenarii et les situations d'utilisation d'un matériel de façon à lui associer ultérieurement les caractéristiques de l'environnement (climatique, mécanique,…) correspondant.

Le maître d’œuvre transformera ce profil de vie système fourni par le maître d’ouvrage en un profil de vie environnement à tous les niveaux d’assemblage en ne retenant que les situations susceptibles de générer des environnements mécaniques « significatifs ». Comme à ce stade ces environnements n’ont pas encore été tous caractérisés, il utilisera son retour d’expérience. Une actualisation pourra être réalisée ultérieurement.

3.1. Contenu et exploitation d’un profil de vie environnement

L’établissement du profil de vie environnement consiste à identifier les conditions d’emploi susceptibles de générer des environnements mécaniques significatifs que verra le matériel durant sa durée de vie :

- manutentions,
- transports logistiques par voies ferrées, aériennes, routières, maritimes, …
- stockages,
- emports tactiques par voies ferrées, aériennes, routières, maritimes, …
- tir,
- vol libre,
- propulsion d’étage de lanceur de satellite,
- séparation d’étage,
- ….

On appelle situation une configuration particulière de l’utilisation d’un matériel (voir ci-dessus).

La description du profil de vie environnement peut être effectuée : à l’aide de phrases, à partir de tableaux où chaque situation est affectée d’un numéro, de graphes ou de tout autres éléments : fragments de graphes, etc. montrant l’enchaînement des différentes situations rencontrées par le matériel considéré. On devra préciser pour chaque situation sa durée et son nombre d’occurrence.
Exemple simple de présentation de profil de vie environnement :

<table>
<thead>
<tr>
<th>Scénario</th>
<th>N°</th>
<th>Situation</th>
<th>Événements</th>
<th>Durée (h)</th>
<th>Occurrences</th>
<th>Nombre de mesures</th>
<th>Coefficient de garantie k sur niveau de contrainte</th>
<th>Configuration du matériel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>Transport logistique par voie routière</td>
<td>Choc manutention</td>
<td>/</td>
<td>1</td>
<td>1 signal temporel</td>
<td>Forfaitaire : 1,3</td>
<td>Matériel arrimé sur porteur logistique par chaine ou sangle d’arrimage</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vibrations mauvaise route</td>
<td>10</td>
<td>1</td>
<td>1 signal Temporel non stationnaire Forfaitaire : 1,3 sur SRE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vibrations bonne route</td>
<td>20</td>
<td>1</td>
<td>6 DSP</td>
<td>Statistique (sur les SRE et SDF)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Transport logistique par voie routière</td>
<td>Vibrations bonne route</td>
<td>10</td>
<td>20</td>
<td>6 DSP</td>
<td>Statistique (sur les SRE et SDF)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Transport logistique par voie aérienne</td>
<td>Vibrations en vol</td>
<td>2</td>
<td>1</td>
<td>6 DSP</td>
<td>Statistique (sur les SRE et SDF)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Choc de passage de niveau</td>
<td>/</td>
<td>1</td>
<td>1 SRC</td>
<td>Forfaitaire : 1,3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vibrations bonne voie</td>
<td>3</td>
<td>1</td>
<td>1 DSP</td>
<td>Forfaitaire : 1,3 sur SRE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Transport tactique sur tout chemin</td>
<td>Vibrations tout chemin</td>
<td>12</td>
<td>1</td>
<td>1 DSP</td>
<td>Forfaitaire : 1,3 sur SRE</td>
<td>Matériel tracté par TRM1000</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Transport tactique sur tout terrain</td>
<td>Vibrations terrain</td>
<td>1</td>
<td>1</td>
<td>1 DSP</td>
<td>Forfaitaire : 1,3 sur SRE</td>
<td></td>
</tr>
</tbody>
</table>

Hypothèses de calcul :
- Un seul axe traité (OX).
- Les chocs seront traités uniquement en SRC et non en SDF.

Spectres à calculer entre 5 et 2000 Hz
- Nombre de points : 200
- Répartition : logarithmique

<table>
<thead>
<tr>
<th>Q</th>
<th>b</th>
<th>K</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>8</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

*CVR = 0,08 en réponse extrême, CVR= 1,0 en fatigue
Lois statistiques sur l’environnement (SRE et SDF) : log-normales

Durée de la spécification : 4 heures

Remarque : Les zones grisées correspondent à des taches élaborées au cours des étapes suivantes.
Chacune des cases du graphe ci-dessus représente une « situation ».

Il convient aussi de noter :
- les interfaces (matériel en conteneur, ...),
- l’état du matériel (en fonctionnement ou non),
- la présence ou non d’une autre ambiance (thermique par exemple).

Ces deux derniers points (état et présence) afin de déterminer éventuellement des épreuves spécifiques non « noyées » dans une synthèse globale.

Une situation est composée d’un ou plusieurs « événements », chacun d’eux étant caractéristique d’un environnement particulier qui sera décrit: par exemple, la situation transport logistique par voie routière peut comprendre les événements tels que : chocs de manutention, vibration bonne route, vibration mauvaise route.

Dans une situation, le matériel est soumis successivement à chacun des environnements correspondants aux événements de la situation.

Deux situations peuvent être :
- « en série » lorsque le matériel est soumis successivement à l’environnement de chacune des situations, qui se succèdent donc chronologiquement,
- « en parallèle » quand le matériel est soumis à l’une ou l’autre des deux situations, mais jamais aux deux successivement. Il s’agit donc de deux possibilités d’utilisation qu’il convient de prendre en compte, sachant qu’une seule d’entre elles sera choisie (matériel transporté par avion ou par hélicoptère par exemple).

Il est important de prendre en compte tous les environnements que subira le matériel et donc de n’oublier aucune situation lors de l’analyse ni aucun événement. Tout oubli peut se traduire par un sous-test.

3.2. **Exemples plus détaillés d’établissement d’un profil de vie environnement.**

Deux exemples sont traités en annexe 9.1 et 9.2 de ce guide :
- le premier, concernant un système d’armes, met en évidence les mécanismes de synthèse de l’environnement mécanique basés sur les SRE, SRC et SDF,
- le second, concerne un équipement du domaine civil (un enregistreur mobile de la qualité de l’air) et met en évidence la manière de construire le graphe des situations du profil de vie à partir d’une description sous forme de texte.
4. ETAPE 2 - CARACTÉRISATION DE L’ENVIRONNEMENT RÉEL

La caractérisation de l'environnement réel consiste à associer des valeurs aux agents d'environnement répertoriés dans chaque situation du profil de vie environnement.

4.1. Caractérisation des agents d'environnement

On caractérise les agents d’environnement de plusieurs points de vue :

4.1.1. Caractérisation de leur nature

Le premier caractère est relatif à la nature des agents d’environnement. On distingue divers environnements : climatique, mécanique, électromagnétique, NBC (nucléaire, biologique, chimique), combinés avec des agents de plusieurs natures intervenant simultanément.

4.1.2. Caractérisation de la Classe de signaux d’un agent d'environnement mécanique

La classification ci après (cf. figure 4.1 et 4.2) est extraite de la partie traitement du signal de l’AGM : (les caractéristiques de cet agent en fonction de sa classe d’appartenance sont présentées dans l’annexe traitement du signal)

![Figure 4.1 : Partie traitement du signal de l'AGM](image1)

![Figure 4.2 : Partie traitement du signal de l'AGM](image2)

Le cas des environnements réels qui combinent plusieurs agents d’environnement mécanique (statique, chocs, vibrations aléatoires, vibrations périodiques, …) doit faire l’objet d’un traitement de séparation approprié. (Cf. exemple de traitement dans l’annexe 9)

Le cas des applications statiques et quasi statiques est décrit dans le paragraphe 6.11.

4.1.3. Caractérisation par rapport à l’origine des données
Les valeurs des agents d'environnement peuvent provenir de différentes sources :
- répertoires normatifs,
- bases de données « maison »,
- valeurs « refuge »,
- valeurs issues de modèles de calcul,
- valeurs issues d’un essai spécifique (ou non),
- valeurs mesurées in situ.

En fonction de l'origine des sources de données, il faut prendre des précautions quant à leur utilisation. Par exemple, les fascicules de la l’AECTP 240 de la norme OTAN STANAG 4370, présente les caractéristiques au sens exprimé ci dessus des agents d’environnement mécaniques pour différentes situations rencontrées dans le profil de vie du matériel. Mais, les valeurs d’environnement évoquées dans ces documents ne sont pas à utiliser en tant que spécification d’un environnement réel. Elles permettent simplement de se faire une idée des caractéristiques des agents d'environnement qu'un matériel est susceptible de rencontrer dans une situation donnée.

4.1.4. Caractérisation en fonction du niveau d’assemblage et de la fonction

Il est possible d’associer à chaque élément de l’arbre produit et de l’arbre fonctionnel le ou les agents d’environnement rencontrés dans une situation donnée.

Le maître d’ouvrage fournit ces éléments au niveau système, le maître d’œuvre les décline aux autres niveaux d’assemblage organique et fonctionnel. Pour cela il peut mettre en œuvre des fonctions de transfert obtenues par mesure ou par calcul.

4.2. Définition des grandeurs physiques

Les grandeurs physiques caractérisant l’environnement mécanique sont:
- l’accélération en régime dynamique qui caractérise les agents chocs et vibrations,
- l’accélération en régime statique ou quasi statique par exemple une accélération constante,
- les accélérations angulaires,
- le déplacement et la vitesse.

4.3. Critères et outils qui permettent de valider la mesure

La qualité des mesures caractérisant un environnement réel conditionne la qualité des sévérités d’essais qui en découlera. Les critères de validation et en particulier les limites d’acceptation de ces critères dépendent du contexte d’emploi des données qui font l’objet de cette validation.

L’objet du présent guide n’est pas d’entrer dans les détails de la démarche de validation de la mesure. On trouvera cependant en annexe 8.6 une énumération des critères à considérer avec des renvois à des références bibliographiques.

Il existe des outils dédiés pour la validation et correction des erreurs.
5. ETAPE 3 - DÉTERMINATION DE L’ENVIRONNEMENT À SIMULER

Cette étape consiste à rechercher un environnement simplifié réputé de même sévérité que l’ensemble des environnements de tout ou partie du profil de vie.

5.1. Principes et lois d'équivalences en termes de spectres de réponse extrême et de dommage par fatigue

Un matériel soumis au cours de sa vie à des chocs et des vibrations aléatoires peut être endommagé par plusieurs mécanismes, parmi lesquels on trouve:

- le dépassement d'une certaine valeur seuil de la contrainte engendrée par l'environnement,
- le dommage par fatigue accumulée sous l'effet des cycles de contraintes alternées subis par le matériel.

La spécification est déterminée en recherchant les caractéristiques d'une vibration aléatoire de même sévérité que les vibrations mesurées dans l'environnement réel, et qui génère donc sous ces deux mécanismes une contrainte extrême et un dommage par fatigue au moins égal à ceux engendrés par la vibration réelle [LAL 77] [LAL 84].

Au stade de l'élaboration de la spécification, il est rare que les caractéristiques dynamiques du matériel soient connues et le calcul de ces paramètres n'est pas possible.

La comparaison environnement réel / spécification est donc effectuée non pas sur la structure réelle, mais plutôt sur un modèle mécanique simple, un système linéaire à un degré de liberté, dont on fait varier la fréquence propre f_0 dans un domaine assez large pour couvrir les fréquences de résonance de la future structure. Il s'agit ainsi d'une généralisation de l'utilisation du modèle du spectre de réponse au choc à tous les types de vibrations, qui prend également en compte la durée d’application des vibrations ayant pour effet un endommagement par fatigue du matériel.

Ce système simplifié ne prétend pas représenter la structure réelle, bien qu’en première approximation, il puisse souvent donner une première idée des réponses. Il s'agit simplement d'un système de référence permettant de comparer les effets de plusieurs environnements sur un système assez simple à partir de critères d'endommagement mécaniques.

On suppose ensuite que deux vibrations qui produisent les mêmes effets sur cet « étalon » auront la même sévérité sur la structure réelle étudiée, qui n'est en général ni à un seul degré de liberté, ni linéaire. Différents travaux ont montré que cette hypothèse n'est pas irréaliste ([LAL 02b] pour les chocs, ou la tenue en fatigue pour les vibrations [DEW 86]).
5.2. **Hypothèses retenues pour le comportement des matériels**

Le SRE a la même définition que le SRC : réponse (déplacement relatif) la plus grande d’un système linéaire à un degré de liberté soumis ici à une vibration quelconque (aléatoire ou sinusoïdale). Les hypothèses nécessaires à son tracé sont donc strictement celles du SRC :
- système de référence linéaire à un degré de liberté,
- le déplacement relatif de la masse par rapport à son support est proportionnel à l’accélération définissant l’excitation,
- la contrainte (représentative de la sévérité) est proportionnelle au déplacement relatif.

Le calcul du SDF suppose, outre les hypothèses de SRE, que :
- la courbe de Wöhler est représentée par la loi de Basquin, qui représente analytiquement la courbe de Wöhler dans sa partie linéaire. Elle relie le nombre de cycles à la rupture d’une éprouvette d’un matériau donné à l’amplitude de la contrainte sinusoïdale qui lui est appliquée :

\[
N \sigma^b = C \tag{5.1}
\]

où b et C sont des constantes caractéristiques du matériau considéré.
- les dommages sont définis selon Miner,
- les dommages sont linéairement cumulatifs (règle de Miner).

5.3. **Le choix du modèle rhéologique de comportement des matériels**

Les comparaisons de sévérités entre environnements vibratoires et/ou spécifications et les transformations environnement réel / spécification pourraient être effectuées par comparaison des contraintes induites dans la structure étudiée. Cependant, au moment de l’écriture des spécifications, en début de projet, la structure n’est pas connue et ce calcul ne peut pas être effectué. En outre, si l’on pouvait le faire, le résultat de la comparaison serait spécifique de la structure concernée et n’aurait donc pas un caractère général.

Ces comparaisons sont donc effectuées à partir des réponses d’un système mécanique théorique, linéaire, le plus simple possible, composé d’une masse, d’un élément de raideur et d’un amortissement (visqueux). Ce modèle « étalon » (cf. figure 5.1) est celui utilisé depuis plus de 60 ans pour la comparaison des sévérités de chocs mécaniques, avec le spectre de réponse au choc. Cette approche permet donc d’uniformiser les méthodes pour les vibrations et pour les chocs.

La réponse calculée est, comme pour les chocs, le déplacement relatif de la masse par rapport à la base du système qui reçoit la vibration et on supposera que la contrainte est proportionnelle à ce paramètre, sans que la constante de proportionnalité soit en général connue. La connaissance de la valeur de cette constante n’est pas importante dans la mesure où l’objectif n’est pas le calcul de la contrainte engendrée dans le matériel, mais la comparaison de la sévérité plusieurs vibrations appliquées à la même structure (donc pour la même valeur de cette constante).

Comme pour les chocs, le critère est la contrainte la plus forte (soit en pratique le déplacement relatif le plus grand) créée dans le système à un degré de liberté en fonction de sa fréquence propre, pour une valeur donnée de l’amortissement relatif du système.

Compte tenu de leur durée, les vibrations peuvent aussi endommager le matériel étudié par fatigue du fait de l’accumulation des cycles de contrainte.
5.4. Définitions des spectres SRC, SRE, SRX et SDF

5.4.1. Spectre de réponse au choc (SRC)

Lorsqu'on applique à la base d'un système mécanique à un degré de liberté masse - ressort - amortisseur une sollicitation dynamique de type quelconque (vibration, choc) pendant une durée donnée, ce système étalon répond par un déplacement relatif de la masse par rapport à la base. L'amplitude maximale z_{sup} (valeur sup.) de ce déplacement relatif dépend de la fréquence propre f_0 de l'étalon: elle est proportionnelle à la contrainte maximale induite dans le ressort.

Dans le cas d’un choc, la courbe représentant les variations de la quantité $4 \pi^2 f_0^2 z_{sup}$ en fonction de la fréquence f_0 pour un amortissement ξ donné est nommée "spectre de réponse au choc". En pratique, on peut distinguer les valeurs positives et négatives de la réponse pour tracer les spectres de réponse au choc « positif » et « négatif ».

5.4.2. Spectre de réponse extrême (SRE)

Si la sollicitation mécanique appliquée à la base du système mécanique ci-dessus est une vibration, quelle que soit sa nature (vibration sinusoïdale, vibration aléatoire stationnaire ou non, ..), le spectre obtenu en considérant les variations de la quantité $4 \pi^2 f_0^2 z_{sup}$ en fonction de la fréquence f_0 pour un amortissement ξ donné est nommée "spectre de réponse extrême".

Lorsque le signal est stationnaire gaussien, il est possible d’éviter le calcul numérique de la réponse de chaque système à un degré de liberté en déterminant la densité de probabilité des pics de la réponse.

Le domaine des fréquences du spectre (axe OX) doit couvrir les fréquences propres de la structure étudiée. En l’absence de données, on calculera le spectre sur le domaine de fréquence du signal traité ou de sa DSP.

Dans le cas des vibrations aléatoires, le SRE donne le pic le plus grand observé en moyenne sur un temps T (amplitude z_s multipliée par $4 \pi^2 f_0^2$) dans la réponse d’un système à un DDL en fonction de sa fréquence propre. L'étude de la distribution des pics les plus grands montre que, la dispersion étant petite,
cette moyenne est une estimation suffisante pour la comparaison de sévérité de plusieurs vibrations ou pour l'écriture de spécifications d'essais (puisqu'on ne s'intéresse qu'à la position relative des courbes). Toutefois, si un bureau d'études veut dimensionner un matériel à partir de ce résultat, il prend le risque de négliger des pics qui ont environ une chance sur deux d'être supérieurs sur la durée T. Il est préférable, pour cet usage, de choisir une valeur ayant un faible risque d'être dépassée.

5.4.3. Spectre de réponse à risque de dépassement (SRX)

Nous avons vu dans le paragraphe précédent que, pour calculer le SRE, on recherche le pic u_0 qui n’est dépassé qu’une fois en posant $N = 1$ dans la formule [8.3] :

$$Q(u_0) = \frac{1}{n_p^+ T}$$

De la même façon, il est possible de rechercher le pic u_0 qui n’est dépassé que n fois à partir de

$$Q(u_0) = \frac{n}{n_p^+ T}$$

où n peut être égal, par exemple à 10^{-2} ou 10^{-3}.

La valeur de u_0 est obtenue numériquement par itérations comme pour le SRE.

Le SRX peut aussi être déterminé avec une très bonne approximation dans l’hypothèse d’une réponse à bande étroite et d’une distribution des pics de Rayleigh à partir de la relation [LAL 02c] :

$$R_X = (2 \pi f_0)^2 z_{eff} \sqrt{-2 \ln \left[1 - (1 - \alpha)^{1/n_0^+ T} \right]}$$ [5.2]

Où :

α est le risque de dépassement accepté (probabilité de trouver une amplitude supérieure à la valeur R_X parmi $n_0^+ T$ pics (la valeur $\alpha = 0.01$ peut être acceptable),

n_0^+ est la fréquence moyenne de la réponse du système à un degré de liberté de fréquence propre f_0.

n_0^+ est égal à f_0 puisque l’expression [5.2] a été obtenue dans l’hypothèse d’un bruit à bande étroite (ici la réponse d’un système à 1 DDL).

Nous appellerons SRX le spectre $R_X(f_0)$ ainsi obtenu. Chaque point du spectre a ici une probabilité d’occurrence différente.

Le SRX peut être exprimé en fonction du SRE précédemment défini selon :

$$R_X = R \sqrt{-\ln \left[1 - (1 - \alpha)^{1/n_0^+ T} \right] \over \ln \left(n_0^+ T \right)}$$ [5.3]

La relation [5.2] peut être simplifiée quand $\alpha << 1$ [LAL 02c et e] :
Le SRX peut être utilisé pour deux types d’applications :
➢ pour dimensionner une structure : il donne la plus grande valeur de la réponse qui peut être obtenue avec une probabilité de dépassement donnée, choisie a priori faible (par exemple 1%),
➢ pour démontrer que la vibration aléatoire étudiée produit une réponse plus grande qu’un choc (l’essai au choc ne sera alors pas effectué). Dans ce cas, le SRX est calculé avec risque de dépassement très grand (99% par exemple). Si ce SRX est plus grand que le SRC du choc, on montre ainsi que la vibration aléatoire est plus sévère que le choc, avec une forte probabilité.
➢ dans le cadre de l’établissement d’une spécification d’essai à endommagement constant, la notion de SRX permet de définir le coefficient d’exagération associé à la spécification d’environnement vibratoire en comparant le SRX de la référence avec le SRX de la spécification d’essai. (voir exemple 1 du § 9).

En termes d’endommagement par fatigue, une notion équivalente au SRX peut être également utilisée pour dimensionner les structures à la fatigue, voire pour comparer l’endommagement de chocs répétés par rapport à celui produit par une vibration aléatoire. Cette notion est dénommée SFX et correspond au niveau d’endommagement par fatigue cumulé avec un risque de dépassement α donné [COL 07b].
Exemple :

Il s’agit de comparer la sévérité d’un choc à celle d’une vibration aléatoire. La figure 5.3 montre qu’il y a au moins 99% de chances pour qu’un pic de la réponse d’un système à un degré de liberté soit plus grand que le pic le plus grand créé par le choc (comparaison du SRX à 99% et du SRC).

S’il fallait dimensionner une structure pour qu’elle résiste à la vibration aléatoire, il faudrait considérer plutôt un SRX calculé pour un faible risque de dépassement, par exemple 1%, qui permettrait de prendre en compte la plus grande contrainte engendrée par cet environnement.

![Figure 5.3: SRC d'un choc comparé au SRE et au SRX d'une vibration aléatoire calculée pour un risque de 1% et 99%](image)

Les remarques sont identiques pour le domaine de fréquences et pour la surtension qu’en 5.4.1.

La formulation du SRX présentée par l’expression [5.2] est un modèle non asymptotique et donc valable quelle que soit la valeur du nombre de cycles retenu \(n = n_0^+ T \). D’autres modèles de SRX dits "asymptotiques" peuvent être utilisés permettant notamment de dériver les expressions analytiques des premiers moments statistiques des plus grand maxima d’une vibration aléatoire gaussienne de durée T finie. C’est le cas des modèles de Gumbel et de Poisson présentés ci-dessous [COL 07a].

En ce qui concerne l’approche asymptotique de Gumbel, la formulation du SRX est la suivante :

\[
R_X = (2 \pi f_0)^2 z_{eff} \left[\frac{\ln([-\ln(1 - \alpha)])}{\sqrt{2.\ln(n_0^+ T)}} \right]^{[5.6]}
\]

On montre alors en comparant [5.2] et [5.6] que le modèle de Gumbel est très conservatif et qu’il de vient comparable au modèle "non asymptotique" pour un nombre de cycles supérieur à 1000. Ce modèle est très couramment utilisé en conception de structure dans le domaine des ponts et des structures maritimes.
En ce qui concerne l'approche asymptotique de Poisson, la formulation du SRX est la suivante :

\[
R_X = (2 \pi f_0)^2 z_{\text{eff}} \left[2 \left(\sqrt{\ln(n_0^+) T} - \ln[-\ln(1 - \alpha)] \right) \right]
\] \[5.7\]

En comparant [5.2] et [5.7], on constate que le modèle de Poisson est très proche du modèle non asymptotique, ce qui permet d'utiliser indifféremment l'un ou l'autre modèle. L'avantage des modèles "asymptotiques" réside dans le fait que l'on peut dériver analytiquement les premiers moments statistiques et donc estimer l'expression du SRE à partir de la loi des pics les plus grands, comme défini dans l'expression [8.21]

5.4.4. Spectre de dommage par fatigue (SDF)

On appelle "spectre de dommage par fatigue" la courbe représentative des variations du dommage D en fonction de \(f_0\), pour \(\xi\) et b donnés (b = inverse de la pente de la courbe de Wöhler) [LAL 77] [LAL 84].

Soit \(\ddot{x}(t)\) une vibration définie par une accélération en fonction du temps appliquée à un système linéaire à un degré de liberté \((f_0, Q)\) pendant la durée T. Nous supposerons que

- le matériau constitutif de ce système a une courbe de Wöhler qui peut être décrite analytiquement par une loi du type loi de Basquin :
 \[
 N s^b = C
 \] \[5.8\]
- la relation contrainte-déformation est linéaire de la forme,
 \[
 s = K z
 \] \[5.9\]
- la loi de Miner peut être appliquée (dommages linéairement cumulatifs).

Par définition

\[
D = \sum \frac{n_i}{N_i}
\] \[5.10\]

\[
D = \frac{K^b}{C} \sum n_i z_i^b
\] \[5.11\]

Où \(n_i\) et \(z_i\) sont donnés par l'histogramme des pics du déplacement relatif réponse \(z(t)\).

Le cas où l'historique de chargement (ordre d'application des contraintes fortes par rapport aux contraintes faibles) a une importance n'est pas pris en compte dans le présent guide.

L'histogramme des pics de la réponse \(z(t)\) peut être déterminé par comptage selon la méthode du Rainflow. Cette méthode permet d'identifier les domaines de variation du déplacement relatif, leur moyenne et par conséquent, l'amplitude et la moyenne de chaque cycle.

Le schéma ci-dessous (cf. figure 5.5) présente la méthode de calcul d'un SDF et d'un SRE par comptage Rainflow à partir d'un signal temporel (méthode numérique ou déterministe).

Il s'agit de calculer les réponses temporelles des N modèles mécaniques à 1 degré de liberté, de fréquences propres \(f_{0i}\) à \(f_{0N}\). La valeur maxi \(z_{\text{sup} i}\) de chaque réponse en déplacement relatif est calculée. L'ensemble des N \(z_{\text{sup}}\) représente le SRE.

Norme Défense
© DGA 2009 – Tous droits réservés
Le comptage des domaines de contraintes est effectué par la méthode Rainflow, pour chaque fréquence propre. Le cumul des dommages associés à chaque domaine permet d’obtenir le dommage D_i à la fréquence propre f_{0i}. L’ensemble des $N D_i$ représente le SDF.

Lorsque le signal est stationnaire gaussien, il est possible d’éviter le calcul de l’histogramme des pics à partir du Rainflow, en utilisant directement la densité de probabilité des pics de la réponse (méthode analytique).
Le dommage moyen subi par le système de fréquence propre f_0 est alors donné par 1 [LAL 02d] :

$$D = K^b \frac{n^b T}{C} z_{eff} \int_{z_p}^{z_{eff}} \left[\sqrt{1-r^2} \frac{r z_p}{2 z_{eff}} \left[1 + \text{erf} \left(\frac{r z_p}{z_{eff} \sqrt{2(1-r^2)}} \right) \right] \right] \, dz_p \quad [5.12]$$

Les remarques sont identiques pour le domaine de fréquences et pour la surtension qu’en 5.4.1.

Remarques : La méthode temporelle de comptage utilisée dans le cas déterministe devrait être cohérente avec celle utilisée dans les techniques spectrales (cf. formule 5.10) basée sur la méthode de comptage des extrema. Par conséquent, il est conseillé d’utiliser cette méthode de comptage dans le cas où on n’a pas de techniques spectrales adaptées à la nature du signal (signaux non stationnaires, non gaussiens...).

5.4.5. **Choix de la méthode de calcul la plus appropriée : DSP ou signal temporel**

Le choix de la méthode de calcul (analytique, à partir de la DSP du signal vibratoire, ou déterministe, directement à partir du signal en fonction du temps) s’appuie sur les critères suivants : [BOI 00] [CHA 01] [LAL 04] [LAL 94] [PER 97] [VIV 99]

- les situations pour lesquelles les signaux d’accélération sont stationnaires, gaussiens, et pour lesquelles on désire utiliser une courbe de Wöhler simplifiée (loi de Basquin $N^b = C$) peuvent être traitées à l’aide de la méthode de synthèse à partir de la DSP des signaux mesurés (méthode analytique). Le critère d’acceptation d’un signal dans cette catégorie est défini par un coefficient d’aplatissement (aplatissement : moment statistique d’ordre 4) proche de 3 et une asymétrie (moment statistique d’ordre 3) proche de zéro,
- toutes les situations peuvent être traitées par la méthode de synthèse à partir du signal temporel (méthode déterministe). La seule exception concerne les vibrations non stationnaires (soit non gaussiennes), ou pour lesquelles on désire prendre en compte la moyenne des cycles de contrainte par la relation de Gerber ou de Goodman (cf. § 7.1). Ces situations doivent être traitées en utilisant directement le signal en fonction du temps.

Notons qu’il est possible d’utiliser les deux méthodes lors d’une démarche de personnalisation d’essais, pour autant que le signal vibratoire étudié soit gaussien. Cette dissociation des situations de vie élémentaires est justifiée si l’on désire réduire la durée des traitements, la méthode analytique étant plus rapide que la méthode déterministe.

Les SRE et SDF calculés à partir d’un signal en fonction du temps donnent à chaque fréquence propre du système à 1 ddl la réponse la plus grande et le dommage par fatigue créés de manière déterministe par la vibration. Le SRE obtenu à partir de la DSP donne le pic le plus grand généré en moyenne sur la durée considérée et le SDF le dommage moyen créé sur cette même durée.

Quand le signal est gaussien, les SDF calculés à partir de la DSP et du signal en fonction du temps sont toutefois très proches si le signal a été correctement échantillonné.

Les SRE peuvent différer un peu plus, en particulier aux grandes fréquences, puisque par principe, le SRE tend alors vers l’amplitude du pic le plus grand du signal vibratoire traité. Statistiquement, l’amplitude de ce pic peut varier d’une mesure à l’autre. Par ailleurs, le SRE obtenu à partir de la DSP

1. La fonction d'erreur erf est définie par $\text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-\lambda^2} \, d\lambda$.

Norme Défense
© DGA 2009 – Tous droits réservés
tend vers \(\bar{x}_{\text{eff}} \sqrt{2 \log(f_{mx}T)} \) où \(T \) est la durée de la vibration, \(f_{mx} \) est la fréquence moyenne de la DSP du signal vibratoire analysé et \(\bar{x}_{\text{eff}} \) sa valeur efficace.

5.5. **Prise en compte de la variabilité des données d'environnement**

Différentes causes sont responsables de la variabilité caractérisant la connaissance de l'environnement réel :

- incertitude sur l'identification de la situation,
- incertitude sur les valeurs prises par les agents de l'environnement caractérisant la situation.

Les données d'environnement sont généralement obtenues au cours d'une campagne limitée de mesures qui n'est pas nécessairement réalisée dans les conditions les plus pénalisantes de chaque situation. Les causes en sont multiples :

- caractère aléatoire inhérent à l'environnement caractérisant une situation,
- état variable des engins porteurs utilisés,
- conditions météorologiques variables,
- facteur humain, avec prise de risques plus ou moins grande: notamment au cours de phases transitoires réputées conduire à un environnement dégradant pour le matériel et diversement appréciées et/ou supportées par un éventuel pilote humain.

Les résultats ainsi obtenus n'incluent donc pas nécessairement les valeurs maximales susceptibles d'apparaître au cours du cycle de vie du matériel. Une évaluation réaliste nécessiterait de recueillir des informations au cours de plusieurs situations du même type.

Une situation ou un événement donné est représenté initialement par un signal temporel pouvant être affecté, en fonction des conditions d'analyse propres au contexte, à une classe de signaux donnée. Ces conditions d'analyse peuvent d'ailleurs varier d'un métier à l'autre, ou d'un type d'emploi à un autre. Il serait donc préférable, pour les situations et/ou les événements caractérisés par des valeurs (de dimensionnement), de disposer de valeurs spécifiées les plus proches possibles des phénomènes temporels initiaux. Ceci n'étant pas toujours possible, il faut au moins rechercher des représentants des signaux temporels initiaux pour chaque classe de signaux.

Par exemple, la séquence temporelle d'un signal accélérométrique peut être décomposée en sous-intervalles par classe de signaux (gaussien, périodique pur, stationnaire ou non, déterministe ou aléatoire, gaussien ou non, etc.).

Les valeurs des paramètres de tri sont les valeurs en usage dans le métier considéré. Habituellement, la DSP représentera un signal aléatoire stationnaire gaussien, un SRE et/ou un SDF représenteront un signal aléatoire stationnaire ou non, etc.

L'établissement de spécifications d'environnement mécanique à partir de données mesurées nécessite une caractérisation statistique, probabiliste ou stochastique de l'environnement réel. Chaque facteur d'environnement doit, dans la mesure du possible, être caractérisé à minima par sa valeur moyenne \(\mu_e \) et son coefficient de variation \(CV_e \) et si possible par sa fonction de répartition ou sa densité de probabilité (histogramme).

A partir des \(n \) représentants de chaque situation et/ou intervalle et pour chaque classe du signal retenue, on caractérisera statistiquement les données :

- établissement (ou estimation) de la loi de distribution des valeurs caractérisant la situation si le nombre de représentants le permet (estimation dans le cas contraire),
Selon le cas, on choisira la loi la plus représentative (loi normale, log-normale, Weibull, …).

D'autres causes peuvent être responsables de l'incertitude affectant la connaissance de l'environnement réel:
- incertitude des chaînes de mesure ou d'exploitation,
- confiance statistique sur les résultats du traitement.

5.6. **Prise en compte de la variabilité des caractéristiques mécaniques des matériels**

Tous les exemplaires réalisés d'un matériau correspondant à une même définition ne possèdent pas les mêmes limites de défaillances par contrainte extrême ou par fatigue. D'un exemplaire à l'autre, des écarts de valeurs existent et sont la conséquence:
- de l'inhomogénéité des matériaux,
- des variabilités liées aux procédés de fabrication. (Tolérances admises lors du dimensionnement et de la fabrication),
- des variabilités liées à la conception elle-même,
- des variabilités liées aux conditions d'emploi du matériel,
- etc.

Cette résistance limite du matériau est distribuée suivant une loi statistique qui peut être caractérisée par sa valeur moyenne et son écart type (ou par son coefficient de variation qui est le rapport écart type sur valeur moyenne).

Il convient de distinguer en général deux types de défaillance :
- par valeur extrême de contrainte,
- par accumulation de contraintes (fatigue).

5.6.1. **Défaillance par contrainte extrême**

Il s'agit des défaillances provoquées par le dépassement du seuil de contraintes admissibles par le matériau utilisé.

Selon le cas, on choisira la loi la plus représentative (loi normale, log-normale, Weibull, …).

5.6.2. **Défaillance par fatigue**

Il s'agit d'une défaillance résultant du cumul de l'endommagement provoqué par un environnement vibratoire de longue durée, par une succession de chocs ou par un cumul de déformations statiques ou dynamiques.

La relation entre contrainte et nombre de cycles à rupture peut être représentée par un réseau de courbes probabilisées (courbe de Wöhler) qui dépend à la fois du matériau (nature, forme, état de surface…) et des caractéristiques des sollicitations (sinusoïdales, aléatoires, décentrées, combinées…).

L'expérience a montré que l'endurance à la fatigue de la plupart des matériaux suit une loi log-normale ou une loi de Weibull, suivant le nombre de cycles considéré. Comme précédemment ceci n'est qu'une orientation et d'autres lois plus représentatives du cas étudié peuvent être employées.

5.7. **Le coefficient de garantie: formulation et principe de calcul**
Selon les considérations précédentes, l'environnement est caractérisé par une valeur moyenne associée à un coefficient de variation et moins fréquemment à un écart type. Ceci justifie que la formulation du coefficient de garantie considère explicitement la valeur moyenne et le coefficient de variation de la contrainte d'environnement.

En outre, le matériel devra résister à la contrainte avec une probabilité de défaillance contractuelle. Comme pour la contrainte, la résistance sera caractérisée par sa moyenne et son coefficient de variation [VAN 03].

La figure 5.5 illustre le mécanisme de défaillance par interaction probabiliste entre deux distributions log-normales mutuellement indépendantes.

\[
\mu_e \text{ est la moyenne de la distribution de la contrainte, } \mu_r \text{ la moyenne de la distribution de la résistance et } P_f \text{ la probabilité de défaillance.}
\]

Le coefficient de garantie CG est défini par le rapport des valeurs moyennes:

\[
CG = \frac{\mu_r}{\mu_e} \quad [5.13]
\]

Les propriétés de stabilité des variables aléatoires relatives aux distributions normale (c.-à-d. l'addition) ou log-normale (c.-à-d. la multiplication) permettent de calculer directement la probabilité de défaillance \(P_f \) à partir de leur coefficient de variation et du coefficient de garantie CG.

Au contraire, pour des distributions statistiques n'ayant pas ces propriétés de stabilité (par exemple: Weibull), il est nécessaire de calculer \(P_f \) en employant une convolution des distributions, qui peut être écrite indifféremment sous deux formes mathématiquement équivalentes:

\[
P_f = \int_{-\infty}^{+\infty} f_r(x) \left[1 - F_e(x)\right] \, dx = \int_{-\infty}^{+\infty} f_e(x) \cdot F_r(x) \, dx \quad [5.14]
\]

Remarque: Selon les distributions considérées, les limites d'intégration doivent correspondre au domaine de variation des variables aléatoires respectives.
Il est parfois possible, pour un couple de distributions identiques, de trouver des approximations satisfaisantes (ce sera le cas pour l’interaction de deux distributions de Weibull: voir ci-dessous).

Dans le cadre d’une approche de dimensionnement, μ_e étant supposé connue, on peut chercher à déterminer les caractéristiques statistiques de $f_r(x)$ ayant la valeur moyenne $\mu_r = \mu_r$, afin que l’interaction probabiliste conduise à une probabilité de défaillance prescrite P_f.

Réciproquement, connaissant $f_r(x)$ et $f_e(x)$, il est possible de déterminer la probabilité de défaillance correspondante P_f.

5.7.1. Interaction de deux distributions normales

5.7.1.1. Probabilité de défaillance:

Si R_n et E_n sont deux variables aléatoires, la marge de sécurité $SM_n = (R_n - E_n)$ est aussi une variable aléatoire normale $N \left(SM_n, \left(\mu_r - \mu_e \right), \sqrt{\sigma_r^2 + \sigma_e^2} \right)$, ceci résultant de la propriété de reproduction additive de la loi normale.

La défaillance apparaîtra si SM_n est inférieure ou égale à 0, soit: $P_f = \text{Prob}(SM_n \leq 0)$

En introduisant l’indice de fiabilité: $\beta_n = \frac{\left(CG_n - 1 \right)}{\sqrt{\left(CG_n CV_r \right)^2 + CV_e^2}}$ [5.15]

égal à l’inverse d’un coefficient de variation, on obtient P_f à partir de la fonction de répartition de la loi normale standardisée, Soit: $P_f = \Phi \left(-\beta_n \right)$

Remarque : On peut déterminer P_f en utilisant les tables habituelles de la loi normale standardisée ou en calculant numériquement l’intégrale correspondante.

5.7.1.2. Coefficient de garantie:

En fonction de $\left(\beta_{ln}, CV_e, CV_r \right)$, le coefficient de garantie s’écrit:

$$ CG_n = \frac{1 + \beta_n \sqrt{CV_e^2 + CV_r^2}}{1 - \beta_n^2 CV_r^2} \left(CV_e CV_r \right)^2 $$ [5.16]

Sa détermination implique la valeur du quantile $\Phi^{-1} \left(\frac{P_f}{10^{-2}} \right)$ qui peut être obtenue en utilisant les tables de distribution de la loi normale standardisée ou par résolution numérique de l’intégrale correspondante. Quelques valeurs caractéristiques sont indiquées dans le tableau 5.1 pour une gamme de probabilités de défaillance usuelles, soit $\left(10^{-2} \leq P_f \leq 10^{-6} \right)$.

<table>
<thead>
<tr>
<th>P_f</th>
<th>10^{-2}</th>
<th>10^{-3}</th>
<th>10^{-4}</th>
<th>10^{-5}</th>
<th>10^{-6}</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_n</td>
<td>2.3263</td>
<td>3.0902</td>
<td>3.7190</td>
<td>4.2649</td>
<td>4.7534</td>
</tr>
</tbody>
</table>

Tableau 5-1: Valeurs de β_n pour des probabilités de défaillance usuelles
Afin de vérifier le résultat obtenu par l'application de la formule précédente, on peut obtenir une première approximation du coefficient de garantie en se référant aux abaques 1-a; 1-b; 1-c et 1-d de l'annexe 8.2 ou en utilisant la relation d'approximation simple suivante [PIE 06]:

\[
CG_n \approx \left(1 + \beta_n \cdot CV_e / \sqrt{2}\right) / \left(1 - \beta_n \cdot CV_r / \sqrt{2}\right)
\] \[5.17\]

Pour (CVe < 1/3 et CVr < 1/6) et pour (Pf > 10^-5), elle fournit un minorant de la valeur exacte avec une précision meilleure que 10%. En dépit de son manque de précision, elle montre clairement l'influence relative des variabilités de la résistance et de l'environnement et peut être utilisée dans le cadre d'une analyse paramétrique préliminaire.

\textbf{Remarque :} Pratiquement, \(CG_n\) est une valeur positive, ce qui implique de respecter la condition \(\beta_n \cdot CV_r < 1\). Ceci résulte des caractéristiques de la loi normale, définie sur le support \((-\infty, +\infty)\). Cette particularité conduit à limiter ce cas d'interaction aux distributions normales ayant une dispersion suffisamment faible: ainsi, la condition usuelle (\(CV < 1/3\)) est équivalente à une distribution normale tronquée à (+/-3 écart-type), ce qui est une condition pratiquement admissible.

\textbf{Application numérique.}
\[Pf_n = 10^{-3} ; CV_e = 1/3 ; CV_r = 1/6 ; -\beta_n = \Phi^{-1}\left(Pf_n\right) = \Phi^{-1}\left(10^{-3}\right) = -3,090
\]
D'où \(CG_n = 2,752\).

L'application de la formule simplifiée nous donne: \(CG_n = 2,718\) (-1,23%)

5.7.1.3. Avantages et limites du cas N/N:
Ce type d'interaction entre les distributions normales a trois avantages essentiels:

- il correspond à un modèle de base conceptuellement simple et clairement interprétable, quant à l'influence relative des coefficients de variation et du coefficient de garantie sur la probabilité de défaillance,
- si l'information disponible concernant les deux distributions est limitée à leurs valeurs moyennes et coefficients de variation, alors le choix d'une distribution normale est logique parce qu'il correspond à un critère de maximisation de l'entropie d'information,
- il est possible d'introduire explicitement dans l'indice de fiabilité une corrélation entre les distributions de la contrainte d'environnement et de la résistance.

Une limitation de ce type d'interaction résulte du support infini de la variable normale aléatoire, généralement incompatible avec le caractère positif et borné des variables physiques. Cependant, on peut admettre une troncature des valeurs négatives, pratiquement acceptable si le coefficient de variation (CV) est approximativement inférieur à 1/3.

5.7.2. Interaction de deux lois log-normales
5.7.2.1. Probabilité de défaillance:
Compte tenu de la transformation qui relie les distributions normale et log-normale, à la propriété de la reproduction additive de la loi normale correspond la propriété de la reproduction multiplicative de la log-normale.

Si \(R_{ln}\) et \(E_{ln}\) sont des variables aléatoires log-normale, le coefficient de la garantie \(CG_{ln} = (R_{ln} / E_{ln})\) est également une variable aléatoire log-normale.

La défaillance apparaît si \(CG_{ln}\) est inférieur ou égal à l'unité: \(Pf_{ln} = \text{Prob.}\left(CG_{ln} \leq 1\right)\)
En revenant au concept de la marge de sécurité utilisé dans le cas d'interaction de deux lois normales, on peut écrire:

\[
Pf_{ln} = \text{Prob.} \left[\log \left(\frac{R_{ln}}{E_{ln}} \right) \leq \log (1) \right] = \text{Prob.} \left[\log \left(\frac{R_{ln}}{E_{ln}} \right) - \log \left(E_{ln} \right) \right] \leq 0 \]
\[5.18\]

En introduisant l'indice de fiabilité: \(\beta_{ln} = \frac{\sqrt{CG_{ln}}}{\sqrt{\log \left(\frac{(1+CV_r^2)(1+CV_e^2)}{(1+CV_{r,e}^2)} \right)}} \]
\[5.19\]

On obtient \(Pf_{ln} \) à partir de la fonction de la fonction de répartition de la loi normale standardisée, soit:

\[
Pf_{ln} = \Phi \left(-\beta_{ln} \right) \] dont la valeur est obtenue comme précédemment (cas N/N).

5.7.2.2 Coefficient de garantie

En fonction de \(\left(\beta_n, CV_e, CV_r \right) \), le coefficient de garantie s'écrit:

\[
CG_{ln} = \sqrt{\frac{(1+CV_r^2)(1+CV_e^2)}{(1+CV_{r,e}^2)}} \exp \left[\beta_{ln} \sqrt{\log \left(\frac{(1+CV_r^2)(1+CV_e^2)}{(1+CV_{r,e}^2)} \right)} \right] \]
\[5.20\]

Afin de vérifier le résultat obtenu par l'application de la formule précédente, on peut obtenir une valeur approximative du coefficient de garantie en se reportant aux abaques 2-b; 2-c et 2d de l'annexe 8.2.
Application numérique:

\[
P_{f_{\ln}} = 10^{-3} \; ; \; C_{Ve} = 1/3 \; ; \; C_{Vr} = 1/6 \; ; \; -\beta_{\ln} = \Phi^{-1}(P_{f_{\ln}}) = \Phi^{-1}(10^{-3}) = -3.090
\]

D’où \(CG_{\ln} = 2.965 \)

5.7.2.3. Avantages et limites du cas LN/LN:

Puisque la loi log-normale résulte d’une transformation exponentielle de la loi normale, le support de la variable est strictement positif, ce qui correspond mieux à la représentation des variables physiques. Contrairement à la symétrie intrinsèque de la loi normale, sa densité de probabilité présente une asymétrie positive qui détermine le résultat de l’interaction mutuelle

- sa queue supérieure lourde indique que la probabilité d’occurrence de contraintes d’environnement élevées est significative: cette tendance est assez proche d’une distribution exponentielle, celle-ci étant justifiée par des considérations d’entropie.
- sa queue inférieure montre un quasi-seuil compatible avec les caractéristiques de résistance des matériaux, ce qui vient en partie compenser l’influence précédente: la résistance à la fatigue correspondant à un nombre modéré de cycles est assez bien représentée par une distribution log-normale.

La comparaison des exemples numériques relatifs à des conditions identiques (\(P_{f}, C_{ve}, C_{Vr} \)), montre que l’interaction LN/LN conduit à accepter un coefficient de garantie légèrement supérieur à celui de l’interaction N/N (approximativement 8% dans le cas particulier considéré).

5.7.3. Interaction de deux lois de Weibull

La stabilité reproductive de la distribution de Weibull concerne les valeurs minimales. Au sens de la loi du « maillon faible », cette propriété n’est pas utilisable pour obtenir une solution analytique dans le cas de l’interaction de ce type de distributions. Dans ces conditions, il est nécessaire de résoudre une intégrale de convolution (voir § 1.3) numériquement ou analytiquement, mais dans ce dernier cas, de manière approchée.

5.7.3.1. Probabilité de défaillance

Si \(E_w \) et \(R_w \) sont deux variables aléatoires indépendantes de Weibull, \(W(\eta, \beta) \), la probabilité de défaillance s’écrit:

\[
P_{f_w} = \int_{0}^{+\infty} f_{e}(x) F_{r}(x) \, dx
\]

expression [5.21] dans laquelle:

- \(f_{e}(x) \) : densité de probabilité de la contrainte d’environnement
- \(F_{r}(x) \) : fonction de répartition de la résistance du matériau

Une solution analytique exacte est la suivante [PIE 92]:

\[
P_{f_w} = \sum_{k=1}^{k=\infty} \frac{(-1)^{k+1}}{\Gamma(k+1)} \left(\frac{\eta_{e}}{\eta_{r}} \right)^{(k+1)} \left(\frac{\beta_{r}}{\beta_{e}} \right) \Gamma \left[1 + k \left(\frac{\beta_{r}}{\beta_{e}} \right) \right] \tag{5.22}
\]

Bien que la convergence de cette série alternée ne soit pas systématiquement assurée, on peut en extraire une approximation du premier ordre sous la forme:
Cette relation, applicable pour $Pf_w < 5\%$, fournit un majorant de la valeur exacte; l'erreur relative décroît uniformément pour Pf_w tendant vers 0 (pour $Pf_w = 1\%$, elle est de l'ordre de 1%).

5.7.3.2. Coefficient de garantie:

En introduisant dans l'expression de Pf_w, les paramètres $\left(\mu_e, \mu_r, CV_e, CV_r \right)$ qui sont fonction de $\left(\eta_e, \eta_r, \beta_e, \beta_r \right)$:

$$\mu_i = \eta_i \Gamma \left(1 + \left(\frac{1}{\beta_i} \right) \right) \text{ et } 1 + CV_i^2 = \frac{\Gamma \left(1 + \left(\frac{2}{\beta_i} \right) \right)}{\Gamma^2 \left(1 + \left(\frac{1}{\beta_i} \right) \right)} \quad \text{(avec: } i = e \text{ or } r)$$

[5.24]

On obtient la solution approchée suivante [PIE 06]

$$CG_w \approx \frac{\Gamma \left(1 + \left(\frac{1}{\beta_r} \right) \right) \left(\Gamma \left(1 + \left(\frac{\beta_r}{\beta_e} \right) \right) \right)^{1/\beta r}}{\Gamma \left(1 + \left(\frac{1}{\beta_e} \right) \right)}$$

[5.25]

Les paramètres de forme (β_i) sont reliés aux coefficients de variation (CV_i) par la relation suivante:

$$1 + CV_i^2 = \frac{\Gamma \left(1 + 2/\beta_i \right)}{\Gamma^2 \left(1 + 1/\beta_i \right)}$$

[5.26]

La résolution numérique de cette expression contenant la fonction intégrale Gamma permet d'obtenir les valeurs nécessaires $\beta_i \left(CV_i \right)$. On pourra obtenir une précision suffisante du coefficient de garantie en se reportant aux abaques 3-a; 3-b; 3-c et 3-d de l'annexe 8.2, établies par résolution numérique.

Application numérique:

$Pf_w = 10^{-3}; CV_e = 1/3; CV_r = 1/6$ D'où $CG_w = 3.117$

5.7.3.3. Avantages et limites du cas W/W:

Comparer aux cas précédents (N/N et LN/LN), ce type d'interaction (W/W) présente une plus grande généralité et possède une meilleure flexibilité en raison de son adaptation à la diversité des situations réelles:

- comme la loi log-normale, la loi de Weibull est définie sur le support des variables positives,
- l'asymétrie des queues, inférieure et supérieure, dépend seulement du paramètre de forme (β),
- si ($\beta = 1$), la distribution de Weibull à deux paramètres dégénère vers la loi exponentielle à un paramètre unique qui permet de représenter des contraintes d’environnement pessimistes (comme la loi LN),
- si ($\beta = 3.6$), elle est plutôt proche d'une distribution normale symétrique (CV voisin de 30%).
la résistance d'un matériau (ou d'un composant) peut être théoriquement représentée par une distribution de Weibull, compte tenu de sa propriété de reproduction par valeurs minimales ("loi du maillon le plus faible),

la résistance à la fatigue d'un matériau soumis à un grand nombre de cycles est assez bien représentée par une distribution de Weibull.

Dans les mêmes conditions, la comparaison des trois exemples numériques précédents montre que ce type d'interaction mène à un coefficient de garantie plus élevé (13% comparé au cas N/N et 5% comparé au cas LN/LN). Il convient de ne pas généraliser un tel résultat parce que les différentes probabilités de défaillance dépendent de la forme des queues de distributions relatives à chaque type d'interaction considéré (donc des CV correspondants) [VAN 02].
5.8. **Synthèse d’un ensemble de situations d’un profil de vie**

Un profil de vie est composé d’un ensemble de situations, chacune d’elles étant composée de un ou plusieurs « événements ».

Le premier travail à effectuer consiste à réaliser une première synthèse de ces événements situation par situation. Dans une situation donnée, le matériau subit successivement tous ces événements.

5.8.1. **Traitement de chaque événement**

Chacun des événements est décrit de préférence à partir de plusieurs mesures, soit par plusieurs signaux en fonction du temps.

Chaque mesure est utilisée pour calculer un spectre tracé dans un domaine de fréquences qui couvre celui des fréquences propres attendues du matériau. En l’absence d’information, ce domaine sera le plus large possible, en se limitant toutefois à hautes fréquences à la fréquence maximum qui peut être réalisée en essai (par exemple environ 2000 Hz sur excitateur). Il s’agit :

- d’un spectre de réponse au choc (SRC) pour les chocs,
- d’un spectre de réponse extrême (SRE) et d’un spectre de dommage par fatigue (SDF) pour les vibrations. Dans le cas des vibrations aléatoires, ces spectres peuvent être calculés à partir de la densité spectrale de puissance (DSP) du signal si celui-ci est stationnaire gaussien ou dans le cas contraire directement à partir du signal en fonction du temps.

Lorsque l’événement est décrit par un nombre suffisant de mesures, on procède à une synthèse à caractère statistique destinée à remplacer l’ensemble des spectres par une seule courbe incluant un coefficient de garantie fonction de la dispersion des spectres et de la variabilité de la résistance du matériau.

Cette synthèse est réalisée comme suit pour chaque événement (cf. figure 5.6) :

- calcul du spectre « moyen » (moyenne des spectres à chaque fréquence) et de l’écart type des SRC,
- calcul du coefficient de variation (rapport écart type / moyenne, noté CVe) en fonction de la fréquence pour l’événement concerné,
- calcul, pour des valeurs spécifiées, de la probabilité de défaillance P0, du coefficient de variation de la résistance (CVR) et pour des lois de distribution données, du coefficient de garantie k(f) à appliquer au spectre moyen. A noter que les valeurs numériques du CVR sont les mêmes pour les SRC et les SRE, mais qu’elles sont différentes pour les SDF. En général, la dispersion du nombre de cycles à la rupture (dommages par fatigue) est beaucoup plus importante que celle de la contrainte à la rupture.

![Figure 5.6: Schéma de synthèse pour chaque événement](image)
Si l’on ne dispose que de deux ou trois mesures, il n’est pas possible de déterminer les éléments statistiques. On trace alors simplement l’enveloppe des spectres et on lui applique un coefficient de garantie qui peut être soit « forfaitaire », soit obtenu à partir d’un calcul tenant compte de la variabilité de la résistance.

5.8.2. Critères de regroupement des événements d’une situation ou synthèse de plusieurs situations

Les événements ou les situations que l’on peut regrouper doivent répondre à certains critères :
- les types de sollicitations doivent être semblables, au sens des types d’essais qui seront mis en œuvre pour les simuler : par exemple un choc ou des chocs d’une part et des vibrations aléatoires d’autre part,
- les environnements qui ont des amplitudes et des durées très différentes ne doivent pas être regroupés : par exemple, transport routier de longue durée (milliers d’heures) et un vol missile (2 minutes),
- la configuration du matériel doit être semblable : conditions aux limites, fonctions du matériel activées,
- les combinaisons éventuelles d’environnement sont éventuellement à prendre en compte (vibrations + température).

5.8.3. Synthèse des événements d’une situation

5.8.3.1. Chocs

Lorsqu’une situation comporte plusieurs chocs, le matériel, quelle que soit sa fréquence propre, doit être capable de supporter sans dégradation la plus grande des contraintes créées par tous ces chocs, ce qui conduit à tracer l’enveloppe (synthèse avec coefficient de garantie) des SRC caractérisant chacun des événements de choc.

5.8.3.2. Vibrations

Les SRE sont l’équivalent des SRC pour les vibrations. Ils sont en conséquence synthétisés selon les mêmes règles.

Les dommages sont par ailleurs supposés linéairement cumulatifs. Tous les événements d’une situation étant successivement subis par le matériel, le dommage par fatigue créé sur chacun des systèmes à 1 DDL est égal à la somme des dommages créés par chacun des événements. Les SDF peuvent donc être additionnés.
A l’issue de ces opérations, chaque situation est caractérisée par trois spectres (un SRC, un SRE et un SDF).

Figure 5.8: Exemple de synthèse des événements

Figure 5.9: Schéma de synthèse des vibrations et chocs
5.8.4. Synthèse de plusieurs situations

Etant données deux situations, deux cas principaux peuvent se présenter :

- soit le matériel est soumis successivement à l’environnement de chacune des situations, qui se succèdent donc chronologiquement (situations «en série» cf. figure 5.10). Il faut donc déterminer :
 - la somme des SDF caractéristiques de chaque situation,
 - l’enveloppe des SRE,
 - l’enveloppe des SRC.

- soit le matériel est soumis à l’une ou l’autre des deux situations, mais jamais aux deux successivement (situations «en parallèle» cf. 5.11). On détermine donc successivement l’enveloppe des SRE, des SDF et des SRC des situations en parallèle. Les courbes obtenues sont donc considérées comme celles d’une situation équivalente en série avec les situations connexes.

L’ensemble du profil de vie peut ainsi être représenté par trois spectres équivalents (cf. figure 5.12).
5.9. Réduction de la durée des essais

Dans le cas de la méthode des SRE/SDF, la définition d’un essai de durée réduite à dommage par fatigue égal s’appuie sur les expressions du dommage déduites de la loi de Basquin. Pour des vibrations sinusoïdales, on a ainsi :

\[
D = \frac{K}{C} f T z_{\text{max}}^{b} = \text{Constante } N z_{\text{max}}^{b} \tag{5.27}
\]

Où le déplacement relatif \(z_{\text{max}}\) est proportionnel à la contrainte, soit à l’amplitude de la sollicitation \(\ddot{x}_m\).

Le nombre de cycles \(N\) étant par ailleurs égal à \(N = f T\), deux vibrations d’amplitude \(\ddot{x}_{m_1}\) et \(\ddot{x}_{m_2}\) de durées respectives \(T_1\) et \(T_2\) produisent le même dommage par fatigue si :

\[
\ddot{x}_{m_2} = \ddot{x}_{m_1} \left(\frac{T_1}{T_2} \right)^{\frac{1}{b}} \tag{5.28}
\]

Dans le cas d’une vibration aléatoire, on a de manière analogue :

\[
\ddot{x}_{\text{eff}_2} = \ddot{x}_{\text{eff}_1} \left(\frac{T_1}{T_2} \right)^{\frac{1}{b}} \tag{5.29}
\]

Cette règle peut être aussi déduite directement de la relation de Basquin \(N \sigma^b = C\).

Elle utilise les mêmes hypothèses que celles considérées de manière plus implicite dans les règles de réduction de durée fournies par les normes plus anciennes.

Elle fait intervenir le paramètre \(b\) avec les mêmes difficultés du choix de sa valeur dans le cas de structures composées de plusieurs matériaux.

Ce paramètre est fixé à une certaine valeur dans ces normes, avec les conséquences d’un sur-test\(^2\) (les structures en aluminium ou en acier pour \(b = 5\)) ou d’un sous-test\(^3\) (l’électronique pour \(b = 8\)) systématique, alors qu’il peut être choisi de manière plus pertinente avec la méthode des SRE/SDF en fonction de la nature des matériaux effectivement présents dans le matériau étudié.

\(^2\) Sous-test : Sévérité d’essai peu élevée par rapport à l’objectif de l’essai.
\(^3\) Sur-test : Sévérité d’essai trop élevée par rapport à l’objectif de l’essai.
5.10. Validation de la réduction de durée

Le SRE peut être utilisé pour écrire directement (à la place du SDF) une spécification lorsque la durée de la vibration est sans importance (seul respect de la contrainte la plus grande en essai).

Le SRE enveloppe des SRE de plusieurs événements d’un profil de vie peut être utilisé pour calculer une spécification d’essai définie par une DSP quand on peut considérer que le risque le plus important est une rupture due à une contrainte trop grande.

La méthode consiste à rechercher les caractéristiques d’une DSP qui produit le même SRE que celui du profil de vie, en fixant une durée arbitraire, sachant que le SRE est un spectre peu sensible à la durée d’application de la vibration [LAL 04].

Il est souhaitable que la durée d’application de la spécification ainsi définie soit petite, au maximum égale à celle de l’événement le plus sévère du profil de vie, afin de ne pas risquer une rupture par fatigue qui ne serait pas représentative. Le but de l’essai est ici simplement de vérifier que le matériel résiste aux plus forts niveaux rencontrés dans l’environnement réel.

La justification de la réduction de la durée est ici effectuée en s’appuyant sur les SRE, qui permettent de vérifier que les contraintes produites par les chocs sont de même ordre de grandeur ou plus grandes que celles créées par les vibrations aléatoires de durée réduite. L’usage des SRE est en général suffisant. Toutefois, cette comparaison pourrait être réalisée de manière plus précise à l’aide des SRX (voir exemple 1 du § 9)

Utilisation des SRE pour valider la réduction de durée.

La démarche en quatre étapes utilisée pour déterminer une spécification conduit à calculer les SDF de tous les environnements vibratoires du profil de vie du matériel concerné et à en déduire par des enveloppes (pour les situations en parallèle) ou par des additions (pour les situations en série) un SDF représentatif du dommage par fatigue créé par l’ensemble du profil de vie. L’étape suivante consiste à rechercher une DSP de durée donnée, en général plus petite que la durée des environnements réels, qui ait un SDF enveloppe (très proche) de celui du profil de vie (cf. figure 5.13).

![Figure 5.13: SDF du profil de vie et de la spécification](image)

A partir de cette DSP, il est important de recalculer les SRE et les SDF pour estimer la qualité de la spécification obtenue et valider la réduction de durée. Le SDF obtenu est comparé à celui du profil de vie complet. Si les écarts sont trop importants, on peut modifier le nombre de points de définition de la DSP ou les valeurs de la fréquence des points retenus. Puis on compare le SRE à celui du profil de vie et au SRC pour évaluer l’effet de la réduction de la durée de l’essai par rapport à celle du profil de vie complet.
Pour simplifier la présentation, nous noterons SRE_{SP} le spectre des réponses extrêmes de la spécification et SRE_{PV} celui issu de l’environnement du profil de vie (référence). Plusieurs cas peuvent se présenter :

- $\text{SRC} > \text{SRE}_{\text{SP}} > \text{SRE}_{\text{PV}}$ (cf. figure 5.14),

![Figure 5.14: Réduction acceptable de la durée](image)

C’est le cas idéal. Le SRE_{SP} est supérieur au SRE_{PV} du fait de la réduction de durée, mais il est inférieur au SRC : le matériel ne subira pas en essai des niveaux instantanés plus grands que dans l’environnement réel. La spécification sera composée d’une vibration aléatoire et d’un choc défini à partir du SRC du profil de vie.

- $\text{SRE}_{\text{SP}} > \text{SRC} > \text{SRE}_{\text{PV}}$ (cf. figure 5.15),

![Figure 5.15: Facteur d'exagération trop importante: augmenter la durée d'essai](image)

Le SRE_{SP} est plus grand que le SRC. Deux attitudes sont possibles :

- conserver la spécification obtenue avec sa durée (réduite), en prenant le risque d’un problème en essai qui pourra être attribué à des contraintes instantanées que le matériel ne subira pas dans sa vie utile. Ce choix peut être justifié par une nécessaire et importante réduction de la durée de l’essai quand l’environnement réel est de grande durée. Toutefois, un incident en essai ne démontrera pas nécessairement que le matériel n’est pas conforme. Il peut être envisagé d’effectuer un choc de spectre enveloppe au SRE_{SP} en tout début d’essai pour vérifier que le matériel supporte sans dommage les contraintes qu’il subira de manière artificielle sous vibration. Il n’est pas utile de simuler le choc correspondant au SRC,

- choisir une durée plus grande pour revenir au cas précédent.

- $\text{SRE}_{\text{SP}} > \text{SRE}_{\text{PV}} > \text{SRC}$ (cf. figure 5.16),
Les chocs de l’environnement réel sont de faible amplitude par rapport aux vibrations et ne peuvent pas dédouaner la réduction de durée. Il est sage dans ce cas de ne pas trop réduire la durée. On pourra ici aussi commencer par un choc de spectre enveloppe du SRE pour les mêmes raisons que précédemment. Il n’est pas non plus utile de réaliser un choc couvrant le SRC de l’environnement réel.

- SRE_{PV} > SRE_{SP} (cf. figure 5.17).

Les vibrations de l’un des événements du profil de vie sont sans doute d’un niveau beaucoup plus fort que les autres vibrations, et d’une durée relativement faible. La spécification résulte essentiellement de cet événement. Appliquer cette spécification sur une durée réduite par rapport à celle de la totalité du profil de vie, mais plus longue que celle de l’événement prépondérant, conduit en fait à allonger la durée de l’essai et donc à réduire les niveaux. Il faut dans ce cas diminuer encore la durée de l’essai jusqu’à ce que les deux spectres soient très proches, le SRE_{SP} étant si possible légèrement enveloppe du SRE_{PV}.

Une illustration de cette approche est présentée dans le traitement de l’exemple en annexe 9.

5.11. Retour inverse à la DSP à partir du SDF

Le calcul des caractéristiques d’une DSPA qui produit sur une durée donnée le même SDF que le SDF du profil de vie peut se faire de manière simple par itération :

- choix de n points sur le SDF du profil de vie,
- génération d’une DSPA d’amplitude constante sur le domaine de fréquences du SDF aux fréquences choisies ci-dessus,
- calcul de son SDF,
5.12. Retour inverse à la DSP à partir du SRE

Le calcul des caractéristiques d’une DSPA qui produit sur une durée donnée le même SRE que celui du profil de vie peut se faire selon le même processus. Le réajustement de l’amplitude G de la DSPA à chaque fréquence est ici obtenu en faisant le produit $G R^{2/b}$.

Ce processus converge très rapidement.

5.13. Cas particulier : prise en compte d’un environnement de type « chocs répétés »

Les chocs répétés peuvent être simulés de deux façons différentes :

5.13.1. Réduction du nombre de chocs et augmentation de leur amplitude pour respecter le dommage par fatigue

Lorsqu’on désire synthétiser un environnement contenant des vibrations aléatoires, sinus et des chocs, il est nécessaire de traiter les chocs à part en utilisant le spectre de réponse au choc (SRC). Nous avons vu précédemment que l’on obtient alors l’environnement à simuler en faisant l’enveloppe des SRC des différents chocs du profil de vie. Cependant, les chocs peuvent quelquefois apparaître en très grand nombre (fonctionnement d’un contacteur électromagnétique par exemple).

Dans ce cas il peut s’avérer nécessaire de reproduire en essai la tenue en fatigue engendrée par le grand nombre de chocs de l’environnement réel, en réalisant un nombre de chocs qui reproduira une fatigue identique.

Pour déterminer ce nombre, il est nécessaire de calculer pour les chocs de l’ensemble du profil de vie la synthèse des SDF prenant en compte le nombre de chocs pour chaque situation.

Ainsi dans ce cas, la partie choc du profil de vie est représentée par un SRC et un SDF (fatigue lié au grand nombre de chocs).

Le nombre de chocs à réaliser est alors obtenu en calculant le rapport entre le SDF du choc temporel synthétique calculé à partir du SRC (Ce choc temporel est obtenu à l’aide des systèmes de pilotage) et le SDF (de la partie choc) du profil de vie.

Généralement cet écart n’est pas constant sur toute la plage de fréquence, on prend alors :

- soit l’écart sur la plus petite fréquence de résonance du matériau à tester si celle-ci est connue,
- soit le plus grand écart obtenu sur l’ensemble du spectre.

Cette démarche est utilisée dans l’exemple de l’annexe 9.2.
5.13.2. Vibrations aléatoires équivalentes à une série de chocs identiques

On se propose ici de rechercher une DSP de même sévérité qu’un choc répété 20 000 fois sur un matériel.

Le choc est celui de la figure 5.18, défini sur 2 500 points. L’équivalence a été réalisée en suivant le processus suivant :

- calcul du SDF du choc appliqué 20 000 fois et de son SRC entre 10 Hz et 2 000 Hz avec un pas logarithmique, pour b = 8 et Q successivement égal à 10 et 20,
- recherche des caractéristiques d’une DSP définie par 40 valeurs dont le SDF est proche de celui des chocs (pour chaque valeur de Q), la durée de l’essai étant choisie de façon à ce que le SRE de la vibration aléatoire soit proche du SRC du choc, soit 20 heures.

Figure 5.18: Choc étudié, appliqué 20 000 fois

Les SDF des chocs et de la vibration aléatoire équivalente sont montrés sur les figures 5.19 (pour Q = 10) et 5.20 (pour Q = 20).

Figure 5.19: SDF des 20 000 chocs et de la vibration aléatoire équivalente pour Q = 10
Les SRE de cette vibration sont comparés au SRC du choc sur les figures 5.21 (Q = 10) et 5.22 (Q = 20).

Figure 5.21: SRC du choc de la figure 5.18 et SRE de la vibration aléatoire équivalente (Q = 10)
Figure 5.22: SRC du choc de la figure 5.18 et SRE de la vibration aléatoire équivalente (Q = 20)

La figure 5.23 montre les DSP des vibrations équivalentes déterminées pour ces deux valeurs de la surtension. On constate une différence sensible dans les résultats, la valeur efficace passant de 398,3 m/s² pour Q = 10 à 345 m/s² pour Q = 20.

Figure 5.23: DSP de la vibration aléatoire équivalente déterminée pour Q = 10 et pour Q = 20

Contrairement au cas d’une spécification en vibrations aléatoires destinée à couvrir plusieurs vibrations aléatoires, l’équivalence vibrations aléatoires – « série de chocs identiques » nécessite de connaître à la fois le paramètre b et le facteur d’amplification dynamique de la structure.
6. ETAPE 4 - RÉDACTION DU PROGRAMME DES ESSAIS

L’élaboration du programme d’essai doit normalement aborder les éléments suivants :

- le choix de la méthode d’essai normalisée :
 - La mise en œuvre d’une méthode d’essai normalisée répond à un impératif qui est d’assurer la reproductibilité de l’essai ; tout développement de nouvelle méthode doit être géré comme un projet pour conduire à l’objectif de validation d’une nouvelle méthode développée spécifiquement.
 - Il est donc indispensable de retenir une méthode d’essai normalisée ou validée spécifiquement.

- L’application d’un facteur d’essai en fonction du nombre des essais qui seront réalisés

- La vérification de la faisabilité de l’essai en fonction :
 - des limitations imposées par les moyens d’essai (combinaison réalisable d’agents d’environnement, critères d’appréciation, etc.),
 - des modes opératoires existant dans les normes (assurant la reproductibilité des essais),
 - de l’état de maîtrise de l’art dans la simulation de l’environnement considéré,
 - éventuellement, des sévérités préférentielles proposées par les normes.

- Le choix de la sanction : il est présenté au § 6.2.6

L’organisation du programme d’essai (enchaînement de l’ensemble de toutes les épreuves) conduit à rechercher le meilleur compromis entre :
 - un coût minimal, obtenu en réalisant successivement toutes les épreuves de chaque axe sans basculement du générateur de vibrations,
 - une bonne représentativité, en effectuant chronologiquement chaque choc et chaque vibration selon les trois axes, ce qui peut permettre, lors d’un incident sur le matériel testé, d’en déterminer plus précisément l’origine.

6.1. Sévérités des essais figurant dans les documents normatifs

On passe en revue les sévérités des essais figurant dans l’AECTP 400 et l’on apporte des commentaires sur leur contenu :

Les annexes de l’AECTP 400 proposent des sévérités d’essais à utiliser en début de programme en l’absence de mesures de l’environnement réel. La partie « Méthode 401 Vibrations » comporte des annexes présentant des sévérités forfaitaires.

Comme exemple, on peut citer l’annexe A concernant les véhicules à roues :
L’environnement considéré appartient à la classe « vibrations aléatoires large bande », on donne un profil de roulement constitué par :
 - un véhicule à roues de transport commun noté V1,
 - un véhicule à roues tout terrain noté V2,
 - une remorque à 2 roues notée V3.
On donne la durée d’essai et la distance correspondante (nombre de km):

- **V1**: 75 min (60 min représentent 4000 km) en vertical et 180 min en transversal ou en longitudinal (60 min représentent 1609 km),
- **V2**: 40 min/axe (40 min représentent 805 km),
- **V3**: 32 min/axe (32 min représentent 52 km).

Les DSP d’accélérations correspondantes sont données.

Concernant V1, les données de base proviennent de relevés effectués sur le plateau de transport de différents véhicules ayant un nombre d’essieux différent, avec différents types de suspension (à lames et à air) et différents rapports de chargement. On a considéré l’enveloppe des DSP de tous ces cas. Il n’est nullement fait mention de la variabilité du matériel en essai. Ces DSP ne correspondent pas directement aux données relevées mais ont été affectées d’un facteur d’exagération pour réduire le temps d’application. (Modèle d’accélération non précisé dans l’annexe). La figure A1 de l’AECTP provient de la DEF STAN 0035 et de la MIL STD 810.

Concernant V2, les terrains sur lesquels les relevés ont été effectués sont représentatifs de terrains d’opérations militaires ; ils incluent les routes pavées, la tôle ondulée et les bosses et irrégularités de terrain. Différentes vitesses ont été mises en œuvre et le chargement a été de 75 % de la charge nominale. Différents points de mesure ont été considérés sur la plateforme du véhicule, dans les zones normales d’installation des matériels transportés. Le spectre final provient d’une combinaison de tous ces cas. Les DSP ne correspondent pas directement aux données relevées mais ont été affectées d’un facteur d’exagération pour réduire le temps d’application. (Modèle d’accélération non précisé dans cette annexe). La figure A2 provient de l’ITOP 1-2-601 et d’autres sources.

Concernant V3, les mesures proviennent de relevés effectués sur la surface d’installation des charges arrimées sur différentes remorques à 2 roues, ayant un ou deux essieux. Les pistes tous chemins incluent les routes pavées, la tôle ondulée, et les bosses et irregularités de terrain. Différentes vitesses ont été mises en œuvre et le chargement a été de 75 % de la charge nominale. Les données n’ont pas été affectées par un facteur d’exagération.

Cette démarche nous amène aux remarques suivantes :

- comment les enveloppes sont elles réalisées ? Si c’est à la main, la valeur efficace sera inutilement trop élevée,
- la valeur du paramètre b dans la réduction de durée appliquée pour les véhicules à roue n’est pas précisée,
- la variabilité du matériel en essai n’est pas prise en compte,
- pour ce qui est de la variabilité de l’environnement, on considère l’enveloppe de tous les relevés :
 - les véhicules pris en compte dans l’élaboration des enveloppes de DSP ne sont pas identifiés ; il n’est donc pas possible d’exclure les véhicules non représentatifs avec le risque de sur application dans certaines bandes de fréquence, ou de sous application dans le cas où les véhicules prévus ne sont pas couverts par ceux pris en compte pour l’élaboration de l’enveloppe,
 - l’enveloppe n’est pas forcément suffisante pour représenter la borne supérieure de l’intervalle de confiance sur l’environnement, en particulier pour les faibles nombres de mesures,
- autant d’essais que de DSP différentes.
6.2. **Contenu d'un programme d'essais**

6.2.1. **Liste des fascicules applicables**

La liste des fascicules à appliquer découle de l'environnement à simuler, des sévérités personnalisées ou forfaitaires et de l'objectif recherché.

Si certaines situations ne sont pas couvertes par les fascicules, le spécificateur peut élaborer des méthodes d'essai nouvelles, ou modifier et adapter les fascicules en fonction de ses objectifs, à condition de garantir la reproductibilité du mode opératoire correspondant.

6.2.2. **Choix des modes opératoires**

Chaque fascicule comporte un ou plusieurs modes opératoires qui s'appliquent aux différentes situations. Le choix du mode opératoire est réalisé en fonction :

- de l'état du matériel,
- de la configuration du matériel,
- des caractéristiques de l'environnement à simuler,
- de la sensibilité du matériel aux grandeurs d'influence,
- de l'existence du moyen d'essai,
- du coût correspondant.

6.2.3. **Établissement des sévérités**

Les sévérités d'essai sont établies à partir :

- de l'objectif recherché,
- des résultats de traitement des données obtenues à l'étape 3 affectés d'un coefficient de garantie pour couvrir les incertitudes dues au caractère statistique des données et de leur traitement,
- des sévérités forfaitaires à appliquer après synthèse avec les sévérités découlant de l'étape 3,
- de la transformation de l’environnement retenu à simuler (fin de l’étape 3) en sévérité d’essai par application d’un facteur d’essai.

6.2.4. **Chronologie des essais**

La chronologie des essais est établie en tenant compte des critères suivants :

- objectif recherché,
- chronologie des agents d'environnement dans le profil de vie,
- capacité destructive de chaque essai,
- effets de synergie de deux agents d'environnement simultanés,
- effets cumulatifs des essais,
- nombre d'exemplaires du matériel en essai.

6.2.5. **Nombre d'exemplaires**

Le programme d'essais doit préciser le nombre d'exemplaires du matériel nécessaire à sa réalisation, ainsi que les essais que chacun d'eux doit subir.
6.2.6. Sanctions

6.2.6.1. Introduction

La sévérité de l'essai étant fixée, il importe de spécifier l'état du matériel pendant et / ou après l'essai :

- dans certains cas, il n'est pas possible d'admettre une quelconque dérive de l'aspect ou des caractéristiques de fonctionnement, lorsque cette dérive risque de compromettre l’issue de la mission,
- dans d'autres cas au contraire, certaines défiances, voire certaines défaillances, peuvent être tolérées si elles n'ont pas d'incidence directe sur le déroulement de la mission, soit parce qu'elles ne compromettent pas réellement l'exploitation du matériel, soit parce qu'elles peuvent faire l'objet d'une opération simple de maintenance corrective.

Le code de sanction a pour but d'établir une graduation dans la définition de l'état du matériel pendant et / ou après l'essai depuis l'état où aucune dérive de ses caractéristiques n'est admise jusqu'à celui où seul un service minimum peut être assuré.

Il n'est pas possible, dans le cadre d'une norme générale, de définir avec précision l'état admissible du matériel après l'essai. Les critères d'examen ci-après peuvent être précisés dans le programme d'essai.

6.2.6.2. Critères d'examen

L'examen du matériel est pratiqué suivant trois critères :

- l'état apparent du matériel résulte de son aspect, des conditions d'accès aux éléments constitutifs et de son confort d'utilisation. Cet examen peut être accompagné de l'expertise de l'état interne du matériel,
- sécurité du matériel (repère "e"),
 La sécurité du matériel résulte des dangers que le matériel peut faire courir au personnel ou aux biens environnants du fait de son état, soit durant l'essai soit ultérieurement. Cette sécurité est déterminée par la valeur d'un certain nombre de paramètres dont la variation au cours des essais peut éventuellement être admise dans certaines limites si elle ne conduit pas à l'apparition d'un risque de sinistre (blessure, électrocution, explosion, feu, envahissement par l'eau, etc…) ; une réparation ultérieure devra alors ramener ces paramètres à leur valeur initiale ou à une valeur convenue.

- fonctionnement spécifique (repère "f")
 Le bon fonctionnement spécifique nominal du matériel est décrit par sa spécification technique. Dans certains cas, le bon fonctionnement peut être altéré par l'essai, tout en assurant des performances minimales acceptables en service courant. Ces performances minimales sont, si elles ne sont pas implicites, fixées par les spécifications techniques. L'examen du fonctionnement spécifique du matériel pendant et / ou après l'essai est généralement réalisé par comparaison avec le fonctionnement spécifique initial sur la base d'un certain nombre de paramètres significatifs éventuellement précisés par le programme d'essais.

L’aide au choix de la sanction de l’essai est décrit dans l’annexe 8.13.
6.3. **La nécessité et le calcul du facteur d'essai**

6.3.1. **Nécessité du facteur d'essai**

Afin d'obtenir un niveau spécifié de fiabilité, la valeur moyenne nécessaire de la résistance peut être définie en multipliant la moyenne $\left(\mu_r \right)$ par le coefficient de garantie $CG > 1$.

De façon générale, cette valeur de CG est obtenue en réalisant des essais de tenue sur un certain nombre de spécimens réputés être identique au matériau ou à l'équipement considéré. Pour des raisons économiques évidentes, le nombre possible d'essais est nécessairement limité et la variabilité de l’échantillonnage conduit à une estimation statistique de cette valeur moyenne.

Ainsi, le but des essais consiste à vérifier que le coefficient de garantie, comme la fiabilité sont obtenus avec le niveau de probabilité prescrit. Si un intervalle de confiance peut être attaché à l’estimation ponctuelle de cette valeur moyenne ou mieux, si on peut accéder à sa distribution statistique, cette valeur moyenne sera bien associée à un niveau de probabilité.

En fonction du niveau de probabilité retenu, du nombre d'essais possible et du coefficient de variation caractérisant la distribution de la résistance, on peut définir un facteur d'essai $FE > 1$. Ce coefficient, multiplié par le coefficient de garantie CG, peut être interprété comme un facteur augmentant la sévérité des essais.

Pratiquement, afin d’atteindre le niveau de fiabilité requis avec une probabilité donnée, le niveau de résistance issu des essais doit être au moins égal au produit $(FE.CG)$.

6.3.2. **Calcul du facteur d’essai.**

La formulation proposée ci après pour le calcul du facteur d’essai à un domaine de validité borné par une valeur max du CVr de 2. Cette valeur représente la valeur maximale rencontrée par la limite de tenue à la fatigue de la plupart des structures.

Le calcul du facteur d’essai est fonction en particulier du nombre d’essai effectué. En toute rigueur un calcul pour le cas $n=1$ (un seul essai) est théoriquement non fondé avec les formulations proposées ci-dessous. Cependant, n’ayant pas actuellement d’alternative, on obtiendra un ordre de grandeur en utilisant la formulation proposée pour $n=1$.

Les formulations qui suivent sont exprimées pour une probabilité $p\%$ de dépasser le quantile supérieur de la distribution de la moyenne de la résistance des n échantillons testés.

6.3.2.1.**Calcul du facteur d'essai pour la distribution normale:**

On suppose que la résistance est représentée par une distribution normale dont on connaît seulement le coefficient de variation (CVr).

Afin d'estimer la valeur moyenne inconnue $\left(\mu_r \right)$ on réalise (n) essais permettant d'obtenir la valeur de la moyenne arithmétique (m) de cet échantillon de taille (n). En fait, cette moyenne arithmétique (m) est seulement une approximation de $\left(\mu_r \right)$ et il est nécessaire pour la corriger, d’une part d'éliminer son biais et d'autre part lui associer une mesure de dispersion (c.-à-d. une variance).

Pour $(CVr < 1/3)$ et $(n = 1, 2, 3...)$, on peut montrer que la moyenne inconnue est une variable aléatoire, pratiquement distribuée selon une distribution normale dont la moyenne est estimée à partir de la méthode du maximum de vraisemblance [PIE 07]
PR NORMDEF 0101

\[
\hat{\mu}_r = \left(\frac{m}{2kCV_r^2} \right)^2 \left[\frac{1}{1+4kCV_r^2} \left(1+CV_r^2 \right) \right] - 1
\]

[6.1]

avec: \(m = \frac{1}{n} \sum_{i=1}^{n} x_i \) (moyenne arithmétique) et \(k(n) = 1+(1/n) \): facteur de correction du biais.

Ce dernier permet d'obtenir une solution explicite acceptable pour le cas d'un nombre d'essais tel que \(n \geq 2 \).

Puisque le facteur d'essai est défini en valeur relative, on peut normaliser la moyenne arithmétique en posant \(m = 1 \).

A cet estimateur de la moyenne, on peut associer une variance minimale correspondant à la borne de Cramer-Rao, ce qui permet d'obtenir le coefficient de variation:

\[
\hat{\sigma}_r = \frac{CV_r}{\hat{\mu}_r} \sqrt{\left(\frac{1}{n} \right) \left(1 + 2CV_r^2 \right)}
\]

[6.2]

Pour une probabilité de dépassement prescrite \(p \% \), ou de manière équivalente pour un quantile \((100 - p\%) \), on peut déterminer le facteur d'essai \(FE_n \) en utilisant le quantile correspondant de la distribution normale standardisée telle que définie au § 5.7.1. Soit:

\[
FE_n \equiv 1 + \frac{CV_r}{\sqrt{n \left(1 + 2CV_r^2 \right)}} \cdot \Phi^{-1} (100 - p\%)
\]

[6.3]

Les abaques 4-a, 4-b, 4-c de l'annexe 8.2 permettent d'obtenir des valeurs approximatives correspondant à trois niveaux de probabilité de dépassement: \(p = 5, 10 \) et \(20\% \), soit respectivement \(\Phi^{-1} (95\%) \); \(\Phi^{-1} (90\%) \); \(\Phi^{-1} (80\%) \).

Application numérique:

Supposons que:

\(CV_r = \frac{1}{3}, \) \(n=2 \) et \((100 - p\%) = 95\% \)

Alors \(\hat{\mu}_r = 0,958, \left(\hat{\sigma}_r / \hat{\mu}_r \right) = 0,213, \Phi^{-1} (95\%) = 1,645 \), ce qui donne \(FE_n(2) = 1,351 \) (le biais est de l'ordre de 4\%).

6.3.2.2. Calcul du facteur d'essai pour la distribution log-normale:

Dans ce cas, l'estimateur qui coïncide le mieux avec les simulations numériques est une distribution log-normale qui a même moyenne que la distribution de référence et une variance égale à la variance de la distribution de référence divisée par \(n \).

Alors, à partir des quantiles de la loi normale standardisée (cf. tableau 1 du § 5.7.2), il est possible de déterminer la valeur de résistance correspondant à une probabilité de dépassement (p%).
Cette étape permet de définir explicitement le facteur d’essai \(FE_{\ln} \), comme suit:

\[
FE_{\ln} = \frac{\exp\left[\sqrt{\log\left(\frac{1+CV_r^2}{n}\right)} \cdot \Phi^{-1}(100-p\%)\right]}{\sqrt{1+CV_r^2/n}}
\]

[6.5]

Les abaques 5-a, 5-b, 5-c de l’annexe 8.2 permettent d’obtenir les valeurs correspondant à trois niveaux de probabilité de dépassement: \(p = 5, 10 \) et 20\%, soient respectivement \(\Phi^{-1}(95\%) \); \(\Phi^{-1}(90\%) \); \(\Phi^{-1}(80\%) \).

Application numérique :
Supposons que:
\(CV_r = 1/3, n = 2, (100 - p\%) = 95\%, \Phi^{-1}(95\%) = 1,645 \)
Alors, \(FE_{\ln}(2) = 1,427 \)

6.3.2.3. Calcul du facteur d’essai pour la distribution de Weibull:

Dans le cas d’une distribution de Weibull, son coefficient de variation (CVr) est relié non-linéairement à son paramètre de forme \((\beta_r) \). Quand ce dernier est imposé, compte tenu de la transformation puissance de la variable réduite, le problème revient à estimer la valeur moyenne d’une distribution exponentielle à partir d’un échantillon de taille \(n \).

Dans ces conditions, le facteur d’échelle \((\eta_r) \) de la distribution de Weibull est une variable aléatoire qui suit une distribution gamma. Il en est de même, à un coefficient près, de la valeur moyenne recherchée.

Si comme précédemment, on introduit le quantile de la distribution normale standardisée \(\Phi^{-1}(100 - p\%) \) correspondant à une probabilité de non-dépassement égale à \((100 - p\%) \), le facteur d’essai s’écrit [PIE-2005]:

\[
FE_w \equiv \left[1 + \left(\frac{CV_r}{3\sqrt{n}}\right) \cdot \Phi^{-1}(100-p\%) - \left(\frac{CV_r}{3\sqrt{n}}\right)^2\right]^{-3}
\]

[6.6]

Les abaques 6-a, 6-b, 6-c de l’annexe 8.2 permettent d’obtenir les valeurs correspondant à trois niveaux de probabilité de dépassement: \(p = 5, 10 \) et 20\%, soit respectivement \(\Phi^{-1}(95\%) \); \(\Phi^{-1}(90\%) \); \(\Phi^{-1}(80\%) \).
Application numérique :
Supposons que:
CVr = 1/3, n = 2, (100-P%) = 95%, \(\Phi^{-1}(95\%) = 1,645 \)
Alors FE = 1,417

Remarque n°1 : Lorsque l'on ne dispose que d'une seule mesure de l'environnement, il est d'usage d'appliquer un coefficient de garantie forfaitaire choisi en fonction de l'expérience. Si la valeur retenue est par exemple égale à 1,2 (appliquée sur le signal temporel), cela correspond :

- en supposant que les lois de distribution de l'environnement et de la résistance sont log-normales,
- et que la probabilité de défaillance est égale à \(10^{-3} \),

à un coefficient de variation de la résistance proche de 6%. On rappelle que ce coefficient de variation reste inférieur à 8% pour la plupart des matériaux métalliques et qu'il peut même quelquefois dépasser cette valeur.

Pour une probabilité de défaillance de \(10^6 \), ce coefficient de variation passe à 3,8%.
L'emploi d'un coefficient de garantie forfaitaire peut donc s'avérer trop optimiste.

Remarque n°2 : Le calcul et l'application du facteur d'essai a été situé dans l'étape 4 pour tenir compte du fait qu'il prend en compte le nombre des essais qui seront effectués et qu'il dépend donc de la stratégie d'essai retenue. En pratique, le facteur d'essai est le plus souvent calculé dans l'étape 3 au moment de la synthèse des données d'environnement par le spécificateur qui connaît déjà le nombre des essais qui seront effectué ; l'étape 4 est quant à elle assurée par un autre acteur : le laboratoire d'essais.

6.4. Remarque sur la spécification des chocs par un SRC

Les systèmes de pilotage permettent de réaliser les chocs sur excitateur à partir d'un SRC spécifié. Le calculateur du système construit à partir de ce SRC un signal de pilotage qu'elle envoie sur l'excitateur. Ce signal est constitué de la somme de composantes de formes simples (sinus amortis, WAVSIN, ZERD, ondelettes, …) dont les caractéristiques (amplitude, décroissance, nombre d’alternances, …) sont estimées par plusieurs itérations pour que le SRC du signal constitué soit proche du SRC spécifié.

Si aucune précaution n'est prise, le signal ainsi construit peut avoir des caractéristiques très différentes des chocs à l’origine de la spécification, avec une amplitude très inférieure et une durée souvent environ 10 fois plus grande.

Bien qu’a priori l’égalité des SRC soit suffisante (c’est le critère de comparaison de la sévérité des chocs), le spécificateur impose souvent un paramètre complémentaire, en général une durée maximum du choc réalisé. Pour obtenir ce résultat, la méthode peut consister à ignorer les premiers points du SRC puisque ce sont eux qui conduisent aux composantes de plus grande durée.

Une autre manière de supprimer le problème serait de spécifier le choc par son SRC tracé jusqu’à une fréquence suffisamment élevée pour atteindre la zone statique dans laquelle l’amplitude du SRC tend vers celle du choc. La donnée du SRC spécifié calculé dans ces conditions imposerait en fait l’amplitude du choc et conduirait à une durée plus proche de la durée réelle.
6.5. **Possibilité de découper une bande en sous bandes (généralement deux)**

Lors du passage de la 3ème étape (synthèse des environnements à simuler) à la 4ème étape (programme d’essais) de la démarche de personnalisation, il faut vérifier que les sévérités d’essais élaborées sont réalisables sur les ensembles générateurs de vibration des laboratoires d’essais. Dans le cas d’un essai de vibrations aléatoires, il peut arriver que la valeur temporelle crête induite (au moins 2,3 fois la valeur efficace, car la plupart des normes imposent une tolérance sur la distribution des valeurs instantanées au moins jusqu’à 2,3 écarts type) dépasse la limite habituelle des 100 g temporel que s’imposent généralement les laboratoires d’essais qui ne veulent pas prendre trop de risques de dégradation de leur bobine mobile.

Seuls les générateurs de vibration monocorde (en anglais : induct’a ring du constructeur Unholtz Dickie) acceptent des valeurs crête temporelle de 600g mais ils sont rares (un seul en France par exemple).

Dans le cas où la valeur crête temporelle attendue dépasse 100 g, on peut alors être amené à envisager de découper la bande de l’essai prévu en sous bandes adjacentes. Est-ce acceptable ?

La réponse à cette question va dépendre du matériel en essai et des modes de défaillance attendus.

Si l’équipement en essai est purement structural (pas d’électronique, de mécanisme, d’optique), on pourra découper en sous bandes de telles sortes que le point de coupure soit suffisamment éloigné (au moins 0,6 par en dessous et 1,4 au dessus d’un mode structural), pour éviter de faire disparaître les effets du couplage entre 2 modes couplés. Il n’en demeure pas moins que les efforts effectifs d’interface, d’arrachement, etc. peuvent être affectés par le fait que les modes agissants se trouvent séparés dans 2 sous bandes. Il faudra dans un tel cas réaliser une modélisation de la structure afin de déterminer les facteurs correctifs sur les valeurs crêtes à appliquer. La validation expérimentale pourra éventuellement être évitée si la marge apparaît comme suffisante.

Dans le cas d’un équipement électronique, d’un mécanisme, d’un équipement optique, une analyse préliminaire de risque doit être faite pour s’assurer qu’aucun composant ne présente de sensibilité à la valeur crête. Cette démonstration ne sera probante que sur la base d’un retour d’expérience suffisant pour des composants identiques.

On pourra aussi valider ce découpage en comparant les SRE et SDF de la spécification et de l’essai ainsi réalisé.

6.6. **Les bâtis d’essai**

6.6.1. **Bâti de chargement / machine d’essai**

Le montage d’essai le plus simple est une machine d’essai mono-axiale, ou la charge est appliquée au matériel en essai grâce à une masse de réaction. Il peut être utilisé pour des simulations d’essais sur des composants dans le cas où le chargement porte sur un composant. Ces machines peuvent mettre en œuvre un actuateur linéaire pour des chargements en traction/compression ou en flexion, ou un actuateur en torsion pour des chargements de torsion.

Remarque : ce n’est pas un essai très habituel et aucune méthode ne le décrit.
6.6.2. Tables de générateur de vibrations

Une table d’essais sur un ensemble générateur de vibrations consiste dans sa partie supérieure en une plaque rigide guidée par des paliers et entraînée par une force d’origine électrodynamique ou électro-hydraulique qui peut mouvoir la table suivant 1 ou plusieurs axes, ou en rotation autour d’un, deux voire 3 axes. Lorsque les mouvements ont lieu suivant 3 axes et autour des 3 axes, on parle de mouvement selon 6ddl.

6.6.3. Chargement ponctuel mais à travers un couplage flexible

Le chargement peut être appliqué au matériel en essai via un flexible faisant fixé au générateur de vibrations à une extrémité et au matériel en essai à l’autre extrémité. La liaison flexible permet un chargement mono axial et évite l’application de rotations et minimise les couplages avec les 2 autres axes. Le matériel en essai peut être supporté à ne structure via ses modes de montage nominaux, ou est encastré ou est supporté par un dispositif souple.

6.6.4. Excitation mono axial et multi point

Une installation mono axiale mais multi point d’entrée à plusieurs générateurs de vibrations placés en parallèle. En exemple on peut citer deux générateurs de vibration couplés pour essayer des charges de grande dimension (missile, conteneur de missile), un ensemble de quatre générateurs de vibration utilisant un ensemble de guidage à paliers cylindriques composé de quatre « posters » (guidage à palier cylindrique, un par ensemble générateur de vibrations) pour vibrer des véhicules à roues en attaquant par exemple chaque roue séparément, ou pour représenter les chargements des efforts aérodynamiques. Le matériel en essai peut être encastré localement (aile d’avion ou fuselage) ou libre (roue de véhicule).

6.6.5. Excitation multiaxial et Mono point

Un système multi axial et mono point d’excitation met en œuvre plusieurs générateurs de vibration agissant suivant deux ou trois des directions tri rectangulaires avec des points d’application ponctuels. Ceci est mis en œuvre dans les cas ou un environnement multiaxial s’applique ponctuellement au matériel dans les conditions d’emploi réelles.

Comme exemple on peut citer la roue d’un véhicule, le rotor de tête d’un hélicoptère, et le point de fixation d’un missile en emport sous avion. Le système multi axial et mono point d’excitation requiert des liaisons flexibles pour autoriser les degrés de liberté nécessaires dans les 3 directions orthogonales. Il peut y avoir du couplage entre les axes qu’un des trois (au moins) générateurs de vibration excitent simultanément.

6.6.6. Excitation multiaxial et multi point

Un système multi axial et multi point d’excitation concerne les cas ou des entrées distinctes sont excitées suivant des directions différentes. Par exemple, chargement aérodynamique en phase propulsée d’un missile, ou bien effets aérodynamique sur les équipements du missile par une attaque en 2 entrées souples avec un générateur de vibrations par entrée.
6.7. **Questions relatives à l’aspect triaxial de l’environnement réel**

Dans la réalité les excitations vibratoires sont triaxiales et il arrive qu’elles s’appliquent en plusieurs points d’entrée du système (cas d’un véhicule par les 4 points de liaison au sol par exemple).

Au niveau des moyens d’essais et des spécifications associées, il convient de différencier les excitations triaxiales appliquées en un point ou en plusieurs points du système.

6.7.1. Excitation triaxiale monopoint :

Si on considère que le système mécanique se comporte de façon isotrope par rapport à l’endommagement, i.e. que les liaisons internes et les excitations secondaires du système sont négligées, il est possible de calculer l’endommagement produit par une excitation triaxiale dans toutes les directions de l’espace.

L’endommagement produit par une excitation triaxiale, peut être déterminé par la projection des mesures d’excitation en x, y, z dans chaque direction de l’espace à partir de l’angle de relèvement α (dans le plan horizontal par rapport à x) et de l’angle d’élévation β (par rapport au plan horizontal).

A partir de la répartition de l’endommagement dans les différentes directions de l’espace, il existe 2 choix possibles :

- l’endommagement est principalement présent sur les axes x, y, z du système. Dans ce cas, il est possible d’utiliser comme moyen d’essai une table de générateur de vibration mono axe (Cf. § 6.10.2). Au besoin, on appliquera un facteur de majoration au niveau de la spécification d’essais pour obtenir un endommagement majorant dans toutes les directions de l’espace,

- l’endommagement est réparti dans toutes les directions de l’espace (cas d’un siège automobile). Dans ce cas, il convient d’utiliser un système d’excitation multiaxe pouvant couvrir jusqu’à 6 degrés de liberté (translation et rotation autour des 3 axes) pour obtenir un essai représentatif. La spécification d’essai est réalisée dans le domaine temporel afin de maîtriser la phase donc la direction de l’excitation triaxiale. Des techniques existent qui permettent de spécifier des essais tridimensionnels accélérés qui respectent les SDF dans tous les axes (Cf. [VIV 06]).

Remarque :

Le choix du paramètre b dans le cas de l’emploi d’une loi de Basquin a une influence réelle sur la répartition de l’endommagement dans les différentes directions de l’espace. Le dommage sera plutôt présent sur les axes principaux du système pour un b important (b>8) et plutôt réparti pour un b faible car l’influence sur une direction faisant un angle α avec les axes principaux sera atténué d’un coefficient (cos α)ᵦ. A contrario, l’endommagement sera réparti de façon plus homogène pour un b plus faible.

![Diagramme 6.1 : calcul du dommage produit par une excitation horizontale en tout point d’un plan pour 2 choix de paramètre b dans le cas de l’emploi d’une loi de Basquin : b = 4 (gauche) et b = 8 (droite)](image)

6.7.2. Excitation monoaxiale ou triaxiale multipoint :

...
Une excitation triaxiale ou monoaxiale multipoint introduit des contraintes triaxiales importantes en
tout point du système. Par exemple, une excitation essentiellement verticale, mais décalée dans le temps
sous les trains avant et arrière d’un véhicule (passage d’un dos d’âne) conduit à des sollicitations triaxiales
en tout point de celui-ci.

Deux choix sont possibles :

- utiliser un moyen d’essais adapté, i.e. un système multiaxial multipoint (Cf. § 6.10.6) ou
 monoaxial multipoint (Cf. § 6.10.4) selon la nature de l’excitation en chaque point,
- décomposer le système en sous systèmes jusqu’à pouvoir considérer qu’un seul point d’entrée est
 représentatif.

6.8. **Environnements mécaniques basse fréquence – domaine statique – quasi-statique**

6.8.1. **Position du problème**

La démarche de personnalisation en environnement mécanique s’applique aussi aux sollicitations
statiques et quasi-statiques. Le profil de vie est constitué de situations où le matériel subit des
accélérations statiques ou basse fréquence, qu’il faut recenser et quantifier. Les spécifications sont
généralement exprimées sous forme de torseurs d’efforts aux interfaces, et sous forme de champ
d’accélérations ramené au CDG. Dans le cas des systèmes de missile, les valeurs sont issues le plus
souvent de simulations par EF très tôt dans le développement (phase de faisabilité). Ces simulations par
EF font dans certains cas l’objet d’échange de modèles entre industriels, pour prendre en compte le
comportement dynamique du missile intégré au porteur qui peut être un véhicule terrestre, un bateau ou un
avion. La confection des structures tient compte des cas enveloppant, dits dimensionnant, de sorte que la
marge soit supérieure ou égale à 0 à Charge Limite qui signifie : sans plastification ou déformation
irréversible altérant les performances quand le matériel est soumis à l’environnement maximal susceptible
d’être rencontré (la norme dédiée à ces aspects est la norme AIR 2004). L’endommagement par fatigue lié
tà ces accélérations statiques ou basse fréquence doit aussi être analysé : partie faible nombre de cycles de
la courbe de Wöhler caractérisant les matériaux, faible nombre de cycles, grande amplitude de contrainte.
Une structure peut présenter localement des contraintes légèrement au-dessus de la limite élastique à
condition que le nombre de cycles ne conduise pas à rupture par fatigue oligocyclique.

Il est à noter que les spécifications dans le domaine statique et quasi-statique prennent en compte les
six degrés de liberté, translations et rotations : champ d’accélération avec accélérations angulaires,
torseurs d’efforts avec six composantes : effort normal, efforts tranchants et moments.

Le spectre de l’environnement mécanique dans le domaine fréquentiel est large, il se trouve découpé
en plusieurs tranches pour lesquelles les sources d’excitation, les effets induits et les types de problème
rencontrés ainsi que les moyens d’essai associés pour reproduire en laboratoire ces environnements sont
différents. Dans la partie basse fréquence du spectre, la frontière entre le domaine « statique ou quasi-
statique » et les « vibrations et chocs » n’est pas toujours facile à discerner. Ces deux domaines font appel
da des méthodologies, des normes des moyens d’essais différents, alors que la réalité physique est sans
frontière.

Le domaine purement statique se caractérise par des accélérations de fréquence nulle dont voici
quelques exemples courants :

- sous l’effet de la gravité les structures subissent des contraintes lors des phases de manutention,
- facteurs de charge lors des manœuvres de l’avion,
- accélération d’un missile lors du tir sous l’effet de la poussée du propulseur.

Deux types d’essai différents répondent aux besoins de validation dans le domaine purement
statique :
essais en centrifugeuse pour reproduire un champ d’accélération constante, ces essais sont généralement faits au niveau « équipements électroniques »,

essais statiques avec vérins hydrauliques pour reproduire un ou des torseurs d’effort, ces essais sont faits au niveau « structure ».

Dans le domaine quasi-statique le système se comporte quasiment comme dans le domaine statique ; les modes de corps rigide sont prédominants. En pratique les bornes du domaine quasi-statique sont étendues jusqu’à englober les premiers modes de déformation élastique. Dans ce domaine quasi-statique, l’environnement a un contenu fréquentiel basse fréquence au regard de la structure ou du système mécanique excité.

Dans le domaine statique la relation \(F = M \gamma \) exprime que toute la masse du système soumis à une accélération participe à générer des efforts et contraintes. Cela reste vrai quand la fréquence d’excitation est inférieure et découpée de la première résonance du système. Dans ce cas le système se comporte comme un corps rigide et il est facile de se ramener par équivalence au domaine purement statique. En revanche, quand l’environnement a un contenu fréquentiel qui englobe partiellement ou complètement les premières résonances du système, l’équivalence dynamique-statique menée lorsque l’on souhaite spécifier des cas de charges statiques pour couvrir un environnement dynamique n’est plus triviale et nécessite une approche par modélisation EF. Plus la fréquence est élevée et plus les modes locaux seront excités mettant en jeu des masses dynamiques de plus en plus faibles en s’éloignant de la relation \(F = M \gamma \).

Prendons le cas d’une poutre encastrée-libre pour laquelle nous avons :
- une masse effective pour le premier mode de flexion représentant 61% de la masse totale, et celle du deuxième mode 19%,
- une accélération de 10 g calée à la fréquence du deuxième mode aura moins d’effet en termes de contraintes à l’encastrément, qu’une accélération de 10 g statique,
- la déformée du premier mode de flexion d’une poutre encastrée est différente de la déformée sous un champ d’accélération statique,
- en dynamique l’effet des accélérations angulaires induit des moments additionnels dans les sections \(M = J \ddot{\theta} \).

La démarche de spécification et la logique de validation pour un système rencontrant un environnement dynamique dimensionnant dont le spectre englobe jusqu’aux premiers modes élastiques est une démarche calculs-essais. C’est le cas par exemple des missiles intégrés sous avions soumis aux chocs d’appontage, ou des missiles intégrés sur navires soumis aux chocs de grenade. Cette démarche peut conduire à différents type d’essais sol :
- essais statiques reproduisant ou enveloppant des torseurs d’efforts rencontrés lors de la sollicitation dynamique,
- essais dynamiques reproduisant ou enveloppant des SRC sans toutefois engendrer des efforts dans les structures inappropriés,
- essais spécifiques (analyse modale, caractérisation de raideurs,...) requis avec pour objectifs le recalage et la validation des modèles.
6.8.2. Exemples des missiles intégrés sous avion soumis aux chocs d’appontage

Une démarche identique essai-calcul est appliquée au cas des missiles intégrés sur frégate soumis aux chocs de grenade.

Un modèle EF de l’avion + missile est nécessaire pour connaître les entrées du missile et donc pour spécifier et concevoir au plus juste. L’une des difficultés est que les entrées du missile dépendent en partie de la définition du missile, une démarche itérative est donc faite au cours du développement pour recaler ces entrées. La logique de validation peut s’appuyer sur des essais statiques pour valider la tenue des structures et sur des essais dynamiques, généralement pour valider les équipements non structuraux ou pour caractériser le comportement dynamique.

Les essais statiques concernent uniquement le test des zones où les marges dégagées par calcul sont faibles. Les cas de chargement de ces essais sont définis pour reproduire ou envelopper les torseurs d’effort dans les sections et dans les liaisons. Ces essais sont généralement faits jusqu’à rupture de façon à connaître les marges. Les résultats sont également utilisés pour caractériser les raideurs sous chargements élevés et participent à la validation des modèles.

Les essais dynamiques peuvent être faits dans un premier temps sur du matériel structural non fonctionnels dans le cadre des essais d’aptitude au vol de façon à caractériser le comportement dynamique et valider les modèles. Ils sont ensuite réalisés sur du matériel fonctionnel dans le cadre de la qualification. Les modèles EF permettent d’appliquer l’environnement réel tel qu’il est, sans être confronté aux limitations des moyens d’essais : le matériel est ainsi sollicité « virtuellement » à un environnement qui commence à 0 Hz avec plusieurs entrées (translations et rotations aux multiples points d’interface) simultanément. Les simulations par EF mettent en évidence qu’il serait intéressant de réaliser certains essais à l’aide de pilotage multi-excitations. Jusqu’à présent, tous les essais en vibrations ou en chocs sont réalisés avec des systèmes classiques de pilotage mono-excitation. Ceux-ci permettent d’obtenir un niveau spécifié en un point de la structure ou de l’équipement. Les réponses aux autres points n’étant pas contrôlées, elles diffèrent de celles obtenues dans les conditions opérationnelles. Elles peuvent différer d’autant plus si les rigidités d’interface avec le bâti faussent le comportement modal. Il a été montré que des essais réalisés avec pilotage mono-excitation et avec une interface rigide peuvent conduire à sur-tester (éventuellement sous-tester en d’autres points), engendrant des efforts dans les liaisons jusqu’à trois fois trop importants. Une souplesse d’interface adaptée permet de restituer le comportement modal basse fréquence. Un système de pilotage multi-excitation permet d’introduire deux (ou plus) signaux temporels différents, en respectant les phases, aux différents points d’interface.
6.9. **Représentativité et reproductibilité des essais**

La **reproductibilité** d'un essai est la faculté de celui-ci de pouvoir être de nouveau réalisé fidèlement dans le temps et dans l'espace. Un essai doit conduire aux mêmes résultats quel que soit le lieu, les moyens mis en œuvre, l'opérateur et la période dans le temps. La clef d'une bonne reproductibilité est l’application stricte de la méthode d’essai normalisée en référence.

Il est de la responsabilité du laboratoire d’essai de s’assurer lors de la revue de contrat que cette méthode de référence est bien précisée par le client. Dans le cas contraire, le laboratoire d’essais doit palier à la carence du client en choisissant la méthode qui lui paraît la plus appropriée. L’identification de la méthode d’essai normalisée figure obligatoirement dans le rapport d’essai.

La **représentativité** d’un essai est la faculté de celui-ci de reproduire en laboratoire d’essais les modes de défaillance qui seraient observés en utilisation opérationnelle, de façon à les corriger. La représentativité, contrairement à la reproductibilité, n’est pas un objectif en soi. Le juste nécessaire de représentativité est à rechercher.

Les paramètres déterminant cette représentativité sont :
- les conditions d’installation ou d’interface avec le moyen d’essai : impédance mécanique (rapport Force injectée /vitesse produite) à l’entrée, distribution des points d’interface, nature des éléments de liaison,
- les aspects multi entrées et multi axes, (cf. § 6.10),
- le degré de représentativité des grandeurs mécaniques simulées par rapport à l’environnement réel (évolution temporelle, phasage ou corrélation des entrées, etc.).

Les facteurs influents sur le niveau de représentativité à assurer sont :
- la proximité des contraintes d’environnement appliquées avec les limites de conception du matériel : plus on s’approche de ces limites et meilleure devra être la représentativité de l’essai,
- le niveau d’assemblage auquel la défaillance est attendue : en principe, un essai d’environnement mécanique ne doit pas remettre en cause le haut niveau d’assemblage (la structure d’ensemble), mais plutôt le bas niveau d’assemblage (un composant monté sur une carte dans un équipement). Plus la défaillance porte sur un haut niveau d’assemblage et meilleure en devra être la représentativité de l’essai.

Cela explique que la plupart des essais de vibrations sont réalisés en fixant le matériel en essai sur une structure rigide (une galette, une équerre, un cube,…) non représentative en impédance mécanique de la structure réelle. Il existe cependant des cas où on devra se rapprocher en essai des conditions aux limites réelles de fixation. Ces cas ne sont pas couverts par les normes d’essais citées dans le présent document et devront soit se référer à des normes ou ces préoccupations sont prises en compte (voir NASA HDBK 7004 « Force limited vibration testing ») soit développer une méthode spécifique et la valider.

4 L’impédance mécanique est le ratio des fonctions de réponse en fréquence de la force injectée par la vitesse qui en résulte
7. RECOMMANDATIONS SUR LE CHOIX DES VALEURS DES PARAMETRES

7.1. Choix de la valeur b

7.1.1. Valeurs usuelles

Dans les normes, ce paramètre est toutefois fixé a priori à une certaine valeur, avec les conséquences d’un sur-test (cas des structures en aluminium ou en acier quand b est fixé à 5) ou d’un sous-test (cas de l’électronique quand b est choisi égal à 8). On pourrait par exemple dans le cas d’un équipement électronique valider séparément le boîtier (b=8) et les cartes électroniques (b=4).

La valeur actuellement préconisée pour b est :
- alliages d'aluminium : 6 à 10,
- aciers: 10 à 15,
- alliages de magnésium : 20 à 25.

Dans un matériel complexe, de nombreux types d'endommagement sont possibles autres que le dommage par fatigue. Pour l’électronique, lorsque la rupture est due à une fatigue de type mécanique (par exemple contacts électriques), la courbe de Wöhler s’applique avec un paramètre b de l'ordre de 3 à 4. Mais la dégradation par corrosion et fretting des contacts peut être importante. Les équivalences basées sur des défauts de fonctionnement manquent encore de données cohérentes. »

La norme MIL STD 810 préconise une valeur de 7,5 alors que la DEF STAN 0035 propose 5.

Une valeur de 3 à 4 est aussi le cas des roulements à billes et des soudures. Des travaux récents conduisent à des valeurs comprises entre 4 et 6 pour des soudures de composants électroniques CMS ou BGA.

Dans la littérature on trouve des valeurs de b décrits dans les tableaux 7.1 et 7.2.

<table>
<thead>
<tr>
<th>Matériau</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fil de cuivre</td>
<td>9,28</td>
</tr>
<tr>
<td>Alliage d'aluminium 6061-T6</td>
<td>8,92</td>
</tr>
<tr>
<td>7075-T6</td>
<td>9,65</td>
</tr>
<tr>
<td>Soudure tendre (63-37 Etain-Plomb)</td>
<td>9,85</td>
</tr>
<tr>
<td>4340 (BHN 243)</td>
<td>10,5</td>
</tr>
<tr>
<td>4340 (BHN 350)</td>
<td>13,2</td>
</tr>
<tr>
<td>AZ31B Alliage de magnésium</td>
<td>22,4</td>
</tr>
</tbody>
</table>

Tableau 7-1: Quelques valeurs de b [LAM80]
Aluminium 6061-T6 Poutre en rotation -1 7,0
Magnésium ZK-60
Magnésium BK31XA-T6 Charge axiale 0,25 8,5 Poutre en rotation -1 5,8
Magnésium QE 22-T6 Wöhler -1 3,1
Acier 4130 Charge axiale -1 4,5
Durci Charge axiale -1 4,1
6Al-4V Ti Charge axiale -1 4,9
Beryllium Charge axiale
Pressé à chaud 0 10,8
Bloc 0,2 8,7
Feuille roulée croisée -1 12,6
Invar Charge axiale 4,6
Cuivre recuit 11,2
Fibre de verre 1S1 6,7

Tableau 7-2: Quelques valeurs de b [DEI72]

7.1.2. Valeur préconisée

La proposition est donc de considérer qu’en début de programme (phase de faisabilité/définition), l’approche doit être conservative et une valeur b = 5 est à considérer. Cette valeur sera reconsidérée si besoin est, fonction de l’expérience initiale ou acquise au cours des essais réalisés.

Dans la phase de définition/développement du produit, une approche calcul permettra d’appréhender les points faibles dont les courbes de Wöhler seront caractérisées à partir d’essai de fatigue.

Les Justifications de b = 5 sont principalement:

- premièrement, des essais récents sur technologie CMS et BGA ont conduit à des valeurs de b entre 4 et 6. Ces résultats rejoignent les travaux du CEA [DR2],
- deuxièmement, la présence de non-linéarité en raideur conduit par rapport au cas linéaire équivalent à diminuer la valeur de b. Le choix d’une valeur faible pour b intègre donc de façon conservatrice l’éventualité d’un comportement non-linéaire.

7.2. Choix de l’amortissement du système étalon

Par convention, l’amortissement est choisi égal à 0.05 (Q = 10) pour le calcul du SRC. Le même choix peut être effectué pour le calcul des SRE et SDF. L’utilisation de cette valeur conventionnelle présente l’avantage de permettre une comparaison rapide de la sévérité relative de plusieurs vibrations et/ou chocs à partir de ces spectres déjà calculés et disponibles dans une base de données. C’est la valeur à retenir de manière générale, et plus particulièrement en tout début de projet lorsqu’on ne dispose d’aucune information sur le comportement dynamique du futur matériel à concevoir. Toutefois, lorsque
l’amortissement est connu, il reste possible de le prendre en compte pour une application spécifique. Sauf élément contraire, on considèrera l’amortissement du premier mode de la structure, puisque c’est celui qui conduit en général aux plus grands déplacements réponse et donc aux plus grandes contraintes.

Remarque :
La surtension n’a qu’une faible influence sur la spécification (DSP) obtenue lorsqu’elle est définie par un grand nombre de points [LAL 04]. Cette propriété peut être mise en évidence en considérant l’expression du dommage créé par une vibration aléatoire de type bruit blanc. Le dommage par fatigue s’écrit, si la réponse peut être considérée comme à bande étroite (tome 4, chapitre 6 [LAL 99d]) :

\[
D = \frac{K^b}{C} n_0^b T (\sqrt{2} z_{eff})^b \Gamma \left(1 + \frac{b}{2}\right)
\]

[7.1]

Si \(G_x(f) \) est la DSP du déplacement relatif réponse et \(G_\tilde{\chi}(f) = G_{\tilde{\chi}0} \) celle de la vibration, on a :

\[
G_x(f) = H_{xx}^2 G_\tilde{\chi}
\]

[7.2]

Où :

\[
|H_{xx}|^2 = \frac{1}{(2 \pi f_0)^4 \left[1 - \left(\frac{f}{f_0}\right)^2\right]^2 + \left(2 \xi \frac{f}{f_0}\right)^2}
\]

[7.3]

D’où :

\[
z_{eff}^2 = \int_0^\infty G_x(f) df = \frac{G_\tilde{\chi}}{64 \pi^3 f_0^3 \xi} = \frac{G_{\tilde{\chi}}}{8 \omega_0^3 \xi}
\]

[7.4]

En reportant cette valeur dans l’expression du dommage, il vient :

\[
D = \frac{K^b}{C} n_0^b T \left(\frac{G_{\tilde{\chi}}}{4 \omega_0^3 \xi}\right)^\frac{b}{2} \Gamma \left(1 + \frac{b}{2}\right)
\]

[7.5]

Sachant que \(n_0^+ = f_0 \), on constate que l’amortissement intervient dans un facteur de \(G_{\tilde{\chi}} \). Le passage de la DSP au dommage, puis le retour depuis le dommage vers la DSP fait intervenir le même facteur. La valeur numérique de l’amortissement est donc sans effet pour un bruit blanc. Lorsque la vibration est très différente d’un bruit blanc (présence de grands pics rapprochés sur la DSP), l’effet de la surtension peut se manifester légèrement, la spécification obtenue étant un peu plus lissée quand elle est calculée pour une surtension de 10 par rapport à un calcul pour \(Q = 100 \).

La même remarque peut être effectuée dans le cas d’une DSP composée de segments de droite [LAL 99d].

Quand le nombre de points est réduit (quelques dizaines), la DSP obtenue est plus lissée, d’autant plus que la surtension est plus petite. La valeur efficace est toujours conservée. Les SRE et SDF sont respectés.

Par convention, l’amortissement est choisi égal à 0,05 (surtension \(Q = 10 \)) pour le calcul des SRC, SRE, SRX et SDF. Lorsque l’amortissement réel est connu, les travaux de comparaison ou d’écriture des spécifications peuvent être effectués avec cette valeur.
7.3. **Choix des valeurs K et C**

Dans la formule du dommage par fatigue vue ci-dessus,

\[
D = \frac{K^b}{C} \left(\sqrt{2} z_{\text{eff}} \right)^b \Gamma \left(1 + \frac{b}{2} \right)
\]

les coefficients K (proportionnalité entre déplacement relatif et contrainte) et C (ordonnée à l’origine de la partie linéaire de la courbe de Wöhler) seront en général normés à 1. Ce choix est sans conséquence dans la mesure où ces coefficients restent identiques tout au long du processus et se compensent lors de l’utilisation des formules réciproques (retour à une DSP à partir du SDF).

L’expression du SDF est donc connue à un facteur multiplicatif près et adaptée à une approche comparative.

7.4. **Choix du coefficient d’exagération**

Le coefficient d’exagération est défini par :

\[
E = \frac{SRE_{\text{essai}}}{SRE_{\text{env réel}}}
\]

Il est recommandé de ne pas prendre un coefficient d'exagération trop élevé qui entraînerait une contrainte d'essai très supérieure à celle induite par l’environnement réel avec pour conséquence une rupture par contrainte extrême plutôt que par fatigue.

Dans la pratique, on se limite en général à 2. Cette règle, très arbitraire, s’appuie sur la remarque que le rapport entre la contrainte instantanée à la rupture et la contrainte limite de fatigue a très souvent cet ordre de grandeur pour l’acier. Ce coefficient d’exagération pourra être augmenté au delà de deux en se référant à la connaissance de la tenue du matériel.

7.5. **Choix de la probabilité de dépassement**

La probabilité de dépassement du quantile supérieur de la distribution de l’estimateur de la moyenne de la résistance de l’échantillon de taille n.

La valeur recommandée est (100 –p) égale à 90 % et il est déconseillé d’utiliser une valeur inférieure à 85%.

Remarque : Dans l’état actuel le guide n’intègre pas encore l’encadrement du CVe ou du CVr.
8. ANNEXES

8.1. Représentation de la courbe de Wöhler

On rappelle ci après des éléments sur la courbe de Wöhler et sur sa représentation.

8.1.1. Courbe de WÖHLER : essais de fatigue avec contrainte imposée

Si l’on soumet une éprouvette à des cycles en traction-compression périodiques en contrainte imposée d’amplitude constante \(S = \frac{\Delta \sigma}{2} \) et de moyenne nulle à fréquence constante, on observe une rupture à \(N \) cycles. En répétant cet essai pour différentes valeurs de \(S \), on obtient un ensemble de points \((N, S)\), qui représenté dans le plan \((N, S)\), donne une courbe appelée courbe de résistance (ou d’endurance) à la fatigue ou courbe de WÖHLER (cf. figure 8.2).

![Figure 8.1: Courbe de WÖHLER](image)

Sur cette courbe, on peut distinguer trois zones :

- une zone de fatigue plastique ou oligocyclique située dans la zone de forte amplitude de contrainte : la rupture intervient après un petit nombre de cycles et est précédée d’une déformation plastique notable,
- une zone de fatigue ou d’endurance limitée où la rupture est atteinte après un nombre limité de cycles, nombre qui croît lorsque l’amplitude de contrainte décroît,
- une zone d’endurance illimitée ou zone de sécurité, sous faible amplitude de contrainte, pour laquelle la rupture ne se produit pas avant un nombre élevé de cycles, de l’ordre de \(10^7 \) (ou plus).

Dans le cas des métaux, cette partie de la courbe peut être approximée par une asymptote horizontale dont la valeur asymptotique définit la limite d’endurance du matériau en fatigue \(\sigma_D \).

Notons qu’en raison de la dispersion statistique des résultats, la modélisation analytique de la courbe de WÖHLER est souvent réalisée pour la courbe moyenne.

8.1.2. Modélisation analytique de la courbe de WÖHLER
Plusieurs chercheurs ayant tenté de modéliser sous forme d’équation la courbe de WÖHLER, c’est-à-dire de donner une expression analytique fournissant le nombre de cycles à la rupture N en fonction de l’amplitude de contrainte appliquée S, ont laissé leur nom attaché au modèle qu’ils ont élaboré. On peut citer les lois du tableau 8.1 :

<table>
<thead>
<tr>
<th>Loi</th>
<th>Expression analytique</th>
<th>Remarques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loi de WÖHLER</td>
<td>Ln N = a – bS</td>
<td></td>
</tr>
<tr>
<td>Loi de BASQUIN</td>
<td>Ln N = a – bLn S</td>
<td></td>
</tr>
<tr>
<td>Loi de STROYMEYER</td>
<td>Ln N = a – bLn (S – σ_D)</td>
<td>Ces trois dernières lois permettent de prendre en compte la limite d’endurance du matériau σ_D.</td>
</tr>
<tr>
<td>Loi de PALMGREN</td>
<td>Ln (N + B) = a – bLn (S – σ_n)</td>
<td>BASTENAIRE permet une approche probabiliste de la courbe de WÖHLER.</td>
</tr>
<tr>
<td>Loi de BASTENAIRE</td>
<td>(N = \frac{A}{(S – \sigma_D)} e^{-c(S – \sigma_n)})</td>
<td></td>
</tr>
</tbody>
</table>

Tableau 8-1: Expressions analytiques des principales lois

Chaque loi apporte une meilleure correction de la modélisation du raccordement progressif entre la zone de fatigue limitée et la zone de fatigue illimitée, jusqu’à la loi de BASTENAIRE qui procure la représentation la plus réaliste de la courbe de WÖHLER.

Néanmoins, la loi de BASQUIN est actuellement la principale loi d’accélération en vigueur dans la phase de spécification des essais car à ce stade on ne sait pas caractériser les inflexions de la courbe de Wöhler (par exemple la limite de fatigue dans le cas de l’acier ou la limite oligocyclique d’une façon plus générale). Cette approche est donc conservative car elle revient à supposer que tous les niveaux de chargement apportent leur contribution au dommage par fatigue, ce qui ne serait pas le cas pour les niveaux inférieurs à une éventuelle limite de fatigue.

Le danger de cette simplification peut se manifester lors d’une réduction de durée, dans le cas où les contraintes produites par les vibrations de l’environnement réel seraient inférieures à la limite de fatigue (durée de vie infinie) et où la réduction de la durée de l’essai conduirait à des contraintes en essai supérieures à cette limite, avec un risque de rupture.

Pour tenir compte de cette difficulté, on pourrait à priori envisager d’utiliser une représentation de la courbe de Wöhler définie par deux segments de droite (loi bi-pente), et caractérisée par deux valeurs du paramètre b.
Cette modification se heurte aux difficultés suivantes [BAR 06] :
- l’axe OY de la courbe de Wöhler donne la contrainte qui correspond à la rupture pour un nombre de cycles donné. Le SDF est tracé à partir du déplacement relatif du système à 1 DDL, la relation déplacement relatif – contrainte n’étant en général pas connue au stade de l’écriture des spécifications. Il n’est donc pas possible de connaître l’ordonnée de la rupture de pente (en déplacement relatif) de la courbe de Wöhler,
- la limite de fatigue, nette pour les aciers, n’existe pas pour beaucoup de matériaux,
- les courbes de Wöhler sont très souvent mal connues pour les très grands nombres de cycles,
- certains travaux actuels mettent en évidence l’existence d’une double inflexion concernant les grands nombres de cycles résultant d’un double mécanisme à l’origine des ruptures. Entre les deux pentes les plus fortes, les résultats sont très dispersés, mais semblent montrer une zone proche d’une horizontale. Ces phénomènes sont mal connus et peu de données seraient disponibles si l’on souhaitait en tenir compte,
- l’utilisation d’une loi bi-pente dans le cas général d’une structure composée de plusieurs matériaux peut conduire à une qualification en fatigue insuffisante ou même erronée si le composant le plus critique est mal identifié.

Dans l’état actuel des connaissances, il est préférable d’utiliser la loi de Basquin, même si elle peut parfois être conservative.

Remarque : La validation expérimentale de l’absence de risque de fretting fatigue ne peut pas intervenir tant que la définition du matériel n’est pas suffisamment avancée. Lorsque c’est le cas, la question est de savoir si le dispositif concerné par ce risque est sur le chemin d’une fonction technique ou d’une fonction de service. Dans le premier cas, la validation incombe à l’industriel en charge du développement et fait partie des actions de développement. Dans le second cas, l’action devrait être intégrée dans le cadre des essais de qualification de la définition du produit. Le premier cas est le plus fréquent et explique qu’on ne rencontre pas souvent en qualification des essais dédiés à la maîtrise du risque de fretting corrosion. Cela dit, il arrive que lors d’essais en endurance en qualification soient révélés de façon imprévue des défauts de fretting fatigue. Ils devront bien entendu être alors corrigés. L’essai en endurance en vibration étant basé sur une équivalence de dommage s’appuyant sur le modèle de Basquin avec cumul d’endommagement de Miner ne permet pas de penser que cette équivalence est également valable pour le fretting fatigue. C’est donc l’effet d’un hasard chanceux qui a permis cette révélation.

8.2. Coefficient de garantie / facteur d’essai : abacuses
CGn DISTRIBUTION NORMALE (Pf = 10-3)
Domaine de validité des approximations

© DGA 2009 – Tous droits réservés
CGn DISTRIBUTION NORMALE (Pf = 10^-6)
CGln DISTRIBUTION LOG-NORMALE (Pf = 10-3)

Domaine de validité des approximations

Abaque N° 2-b
CGIn DISTRIBUTION LOG-NORMALE (Pf = 10⁻⁶)
CGln DISTRIBUTION LOG-NORMALE (Pf = 10-6)
Domaine de validité des approximations

© DGA 2009 – Tous droits réservés
CGw DISTRIBUTION DE WEIBULL (Pf = 10-3)
Domaine de validité des approximations
CGw DISTRIBUTION DE WEIBULL (Pf = 10⁻⁶)
CGw DISTRIBUTION DE WEIBULL (Pf = 10-6)
Domaine de validité des approximations

© DGA 2009 – Tous droits réservés

Abaque N° 3-d
FACTEUR ESSAI: DISTRIBUTION NORMALE
Probabilité de dépassement: 5%

Abaque N° 4-a
FACTEUR ESSAI: DISTRIBUTION NORMALE
Probabilité de dépassement: 20%

Abaque N° 4-c
FACTEUR ESSAI: DISTRIBUTION LOG-NORMALE

Probabilité de dépassement: 5%

Abaque N° 5-a

© DGA 2009 – Tous droits réservés
FACTEUR ESSAI: DISTRIBUTION LOG-NORMALE
Probabilité de dépassement: 10%

Abaque N° 5-b
FACTEUR ESSAI: DISTRIBUTION LOG-NORMALE

Probabilité de dépassement: 20%

Abaque N° 5-c
FACTEUR ESSAI: DISTRIBUTION DE WEIBULL

Probabilité de dépassement: 5%

Abaque N° 6-a
FACTEUR ESSAI: DISTRIBUTION DE WEIBULL
Probabilité de dépassement: 10%

Abaque N° 6-b

© DGA 2009 – Tous droits réservés
FACTEUR ESSAI: DISTRIBUTION DE WEIBULL
Probabilité de dépassement: 20%

Abaque N° 6-c
8.3 Calcul du SRE

Le SRE d’une vibration peut être calculé :

- soit directement à partir d’un échantillon de signal du temps. Il donne alors, à chaque fréquence propre, la valeur du pic le plus grand de la réponse d’un système à 1 ddl observé pour cet échantillon. Pour que le résultat soit statistiquement satisfaisant, il faut donc que l’échantillon ait une durée suffisante. Aucune hypothèse n’est ici nécessaire sur la nature du signal (aléatoire stationnaire ou non, …). La recherche du pic le plus grand est effectuée à partir du calcul numérique de la réponse,

- soit, si le signal est stationnaire gaussien, à partir de sa DSP. On obtient alors à chaque fréquence propre la valeur du pic le plus grand, en moyenne, sur la durée T choisie pour le calcul.

Le processus est le suivant [LAL 94] [LAL 02c] [LAL 02d]:

- calcul de la DSP du signal vibratoire,
- calcul des valeurs efficaces \(\bar{z}_{\text{eff}}, \bar{z}_{\text{eff}}, \bar{z}_{\text{eff}} \) des déplacements, vitesse et accélération relatifs de la réponse du système à un degré de liberté à partir de la DSP,
- calcul de la fréquence moyenne et du nombre moyen de pics par unité de temps,
- calcul du coefficient d’irrégularité \(r \) de la réponse,
- détermination de la densité de probabilité des pics de la réponse,

\[
q(u) = \frac{\sqrt{1-r^2}}{\sqrt{2\pi}} e^{-\frac{u^2}{2(1-r^2)}} + \frac{u r}{2} e^{-\frac{u^2}{2}} \left[1 + \text{erf} \left(\frac{u r}{\sqrt{2(1-r^2)}} \right) \right] \quad [8.1]
\]

- détermination de la fonction de répartition des pics de la réponse.

\[
Q(u_0) = 1 - P(u_0) = \frac{1}{2} \left[1 - \text{erf} \left(\frac{u_0}{\sqrt{2(1-r^2)}} \right) + r e^{-\frac{u_0^2}{2}} \left[1 + \text{erf} \left(\frac{r u_0}{\sqrt{2(1-r^2)}} \right) \right] \right] \quad [8.2]
\]

où \(Q(u_0) \) est la probabilité que \(u > u_0 \). La méthode consiste à se fixer une valeur de \(Q(u_0) \) et à rechercher la valeur de \(u_0 \) correspondante. Le nombre total moyen de pics supérieurs à \(u_0 \) sur une durée T est égal à

\[
N = n_p^+ T Q(u_0) \quad [8.3]
\]

Le pic le plus grand pendant T (en moyenne) correspond approximativement au niveau \(u_0 \) qui n’est dépassé qu’une seule fois, d’où

\[
Q(u_0) = \frac{1}{n_p^+ T} \quad [8.4]
\]

Le niveau \(u_0 \) est déterminé par itérations successives. La fonction de répartition \(Q(u) \) étant une fonction décroissante de \(u \), on se donne deux valeurs de \(u \) telles que :

\[
Q(u_1) < Q(u_0) < Q(u_2) \quad [8.5]
\]

et, à chaque itération, on réduit l’intervalle \((u_1, u_2) \) jusqu’à ce que, par exemple,

\[
\frac{Q(u_1) - Q(u_2)}{Q(u_0)} < 10^{-2}
\]
D'où, par interpolation,

\[z_s \approx z_0 = z_{eff} \left[\left(u_2 - u_1 \right) \frac{Q(u_1) - Q(u_0)}{Q(u_1) - Q(u_2)} + u_1 \right] \]

et

\[R = \left(2 \pi f_0 \right)^2 z_s = \left(2 \pi f_0 \right)^2 z_{eff} \left[\left(u_2 - u_1 \right) \frac{Q(u_1) - Q(u_0)}{Q(u_1) - Q(u_2)} + u_1 \right] \]

Dans ce dernier cas, la méthode la plus précise de calcul du SRE utilise la distribution des maxima [LAL 94] [LAL 02c] :

\[Q(u_0) = 1 - P(u_0) = \frac{1}{2} \left[1 - \text{erf} \left(\frac{u_0}{\sqrt{2(1-r^2)}} \right) \right] + \text{erf} \left(\frac{r u_0}{\sqrt{2(1-r^2)}} \right) \]

Où \(Q(u_0) \) est la probabilité que \(u > u_0 \). La méthode consiste à se fixer une valeur de \(Q(u_0) \) et à rechercher la valeur de \(u_0 \) correspondante. Le nombre total moyen de pics supérieurs à \(u_0 \) sur une durée \(T \) est égal à

\[N = n_p^+ T Q(u_0) \]

Le pic le plus grand pendant \(T \) (en moyenne) correspond approximativement au niveau \(u_0 \) qui n'est dépassé qu'une seule fois, d'où

\[Q(u_0) = \frac{1}{n_p^+ T} \]

Le niveau \(u_0 \) est déterminé par itérations successives. La fonction de répartition \(Q(u) \) étant une fonction décroissante de \(u \), on se donne deux valeurs de \(u \) telles que :

\[Q(u_1) < Q(u_0) < Q(u_2) \]

et, à chaque itération, on réduit l'intervalle \((u_1, u_2) \) jusqu'à ce que, par exemple,

\[\frac{Q(u_1) - Q(u_2)}{Q(u_0)} < 10^{-2} \]

D'où, par interpolation,

\[z_s \approx z_0 = z_{eff} \left[\left(u_2 - u_1 \right) \frac{Q(u_1) - Q(u_0)}{Q(u_1) - Q(u_2)} + u_1 \right] \]

et

\[R = \left(2 \pi f_0 \right)^2 z_s = \left(2 \pi f_0 \right)^2 z_{eff} \left[\left(u_2 - u_1 \right) \frac{Q(u_1) - Q(u_0)}{Q(u_1) - Q(u_2)} + u_1 \right] \]
Exemple :

Vibration aléatoire définie par :

\[
\begin{align*}
100 - 300 \text{ Hz} & \quad \ldots \quad 5 (\text{ms}^{-2})^2/\text{Hz} \\
300 - 600 \text{ Hz} & \quad \ldots \quad 10 (\text{ms}^{-2})^2/\text{Hz} \\
600 - 1000 \text{ Hz} & \quad \ldots \quad 2 (\text{ms}^{-2})^2/\text{Hz}
\end{align*}
\]

Durée : 1 heure

Le spectre de réponse extrême est tracé sur la figure 8.2 pour \(5 \leq f_0 \leq 1500 \) Hz et \(Q = 10 \).

Figure 8.2: SRE d'une vibration aléatoire définie par sa DSP
Remarque : Le SRE peut aussi être calculé à partir d'hypothèses simplificatrices :

- **Calcul du SRE partiel des valeurs instantanées de la réponse,**

Le raisonnement s'appuie sur l'hypothèse que la vibration \(\ddot{z}(t) \) étudiée est gaussienne à moyenne nulle. La distribution des valeurs instantanées de la réponse est alors elle-même gaussienne et, si \(\ddot{z}(t) \) et \(\dddot{z}(t) \) sont des fonctions indépendantes, le nombre moyen par seconde de passages d'un niveau \(a \) avec pente positive peut s'écrire :

\[
n_+^a = n_0^+ e^{-a^2} \exp \left(-\frac{2}{2} \right) \quad [8.13]
\]

Soit, sur une durée \(T \) :

\[
N_+^a = n_0^+ T e^{-a^2} \exp \left(-\frac{2}{2} \right) \quad [8.14]
\]

Le niveau le plus grand pendant cette durée \(T \) est celui qui n'est dépassé qu'une seule fois :

\[
N_+^a = 1 = n_0^+ T e^{-a^2} \exp \left(-\frac{2}{2} \right) \quad [8.15]
\]

D'où le niveau \(a \)

\[
a = z_{eff} \sqrt{2 \ln n_0^+ T} \quad [8.16]
\]

A la fréquence \(f_0 \) considérée (et pour la valeur de \(Q \) choisie), le spectre de réponse extrême a pour amplitude:

\[
R = \left(2 \pi f_0 \right)^2 a = \left(2 \pi f_0 \right)^2 z_{eff} \sqrt{2 \ln n_0^+ T} \quad [8.17]
\]

La probabilité pour que ce niveau soit atteint dans un temps inférieur ou égal à \(T \) est donnée par :

\[
P(T) = 1 - e^{-n_+^a} = 1 - e^{-1} = 0.632
\]

Le SRE pourrait être déterminé pour une probabilité \(P_0 \) donnée de dépassement du seuil \(a \) à partir de la relation :

\[
R = \left(2 \pi f_0 \right)^2 z_{eff} \sqrt{2 \left\{ \ln \left(n_0^+ T \right) - \ln \left[-\ln \left(1 - P_0 \right) \right] \right\}} \quad [8.18]
\]
Limite du SRE aux grandes fréquences

Quand la fréquence propre devient grande par rapport à la borne supérieure du domaine de définition de la DSP entrée, la fréquence moyenne du déplacement relatif réponse tend vers celle de l'excitation. Elle est alors indépendante de la fréquence propre du système excité. L'expression [8.22] du SRE a donc pour limite :

$$\omega_0^2 z_{sup} \approx \dot{x}_{eff} \sqrt{2 \ln f_{mx}} \frac{T}{2}$$ \[8.19\]

\dot{x}_{eff} = valeur efficace du signal analysé
f_{mx} = fréquence moyenne du signal vibratoire
T = durée de la vibration

On retrouve la propriété générale des spectres de réponse au choc qui tendent à haute fréquence vers la valeur la plus grande de l'excitation.

- **SRE calculé à partir de la distribution des pics les plus grands de la réponse,**

Dans l'hypothèse d'une réponse à bande étroite et d'une loi de distribution des pics de la réponse de Rayleigh, il est possible de déterminer la loi de distribution des pics et d'en calculer la moyenne [LAL 02c].

$$P(u_i < u) = \left[1 - \exp \left(-\frac{u^2}{2} \right) \right]^{n_0} T$$ \[8.20\]

On en déduit l’expression du SRE :

$$\omega_0^2 z_{sup} = \left(2 \pi f_0 \right)^2 \dot{x}_{eff} \left[\sqrt{2 \ln n_0} \frac{T}{2} + \frac{\epsilon}{\sqrt{2 \ln n_0}} \frac{T}{2} \right]$$ \[8.21\]

A noter que l’expression [3.2] ci-dessus est une approximation de ce résultat pour $n_0 T$ grand.

- **spectre de réponse défini par k fois la réponse efficace.**

On fait l'hypothèse que la distribution des valeurs instantanées de la réponse est gaussienne. Chaque point du spectre représente la réponse qui a une probabilité constante fixée de ne pas être dépassée.

![Figure 8.3: Décomposition de la DSP en segments de droite pour le calcul du déplacement efficace réponse](image)

Le spectre réponse est obtenu en traçant

Norme Défense
© DGA 2009 – Tous droits réservés
\[R = k \left(2 \pi f_0 \right)^2 z_{\text{eff}} \]

[8.22]

en fonction de \(f_0 \), pour \(\xi \) donné [BAN 78]. La constante \(k \) est choisie de manière à pouvoir affirmer, avec une probabilité donnée \(P_0 \), que le maximum de la réponse est inférieur, à une fréquence \(f_0 \), à l'ordonnée du spectre [BAD 70]. La probabilité \(P_0 \) est maintenue constante quelle que soit \(f_0 \).

Etant donnée une DSP calculée à partir d'une accélération \(\ddot{x}(t) \) (cf. figure 8.3), la valeur efficace du déplacement réponse \(z_{\text{eff}} \) d'un système linéaire à un degré de liberté, de fréquence propre \(f_0 \) et d'amortissement \(\xi \) donnés, est déterminée à partir de [LAL 02d],

\[z_{\text{eff}}^2 = \frac{\pi}{4 \xi \left(2 \pi \right)^4 f_0^4} \sum_{j=1}^{n} a_j G_j \]

[8.23]

ou, si la DSP est composée de segments de droite horizontaux, par :

\[z_{\text{eff}}^2 = \sum_{i=1}^{n} \frac{G_i}{4 \xi \omega_0^2} \left[\frac{\xi}{\alpha} \ln \frac{h^2 + \alpha h + 1}{h^2 - \alpha h + 1} + \frac{2 h + \alpha}{2 \xi} + \frac{2 h - \alpha}{2 \xi} \right] h_i \]

[8.24]

La réponse efficace peut être déterminée d'une manière plus approchée à l'aide de la relation [BAN 78] [FOS 82] [SHO 68] :

\[\omega_0^2 z_{\text{eff}} = \sqrt{\frac{\pi}{2}} f_0 Q G_\chi(f) \]

[8.25]

Établie dans le cas où \(G_\chi \) est un bruit blanc, en considérant que, dans le cas où \(G_\chi \) est quelconque, la réponse est principalement due aux valeurs de la DSP aux fréquences situées autour de la résonance.

Si la DSP varie peu autour de \(f_0 \), cette relation donne une valeur approchée de \(z_{\text{eff}} \) acceptable même pour un bruit formé. La valeur \(k = 3 \) est souvent retenue pour l'estimation des pics extrêmes ; K. Foster choisit \(k = 2.2 \) pour les études de rupture par fatigue [FOS 82]. Le choix d'une valeur constante \(k \) est souvent critiqué, car il n'y a aucune raison de considérer une valeur particulière 3, 4 ou 5, un grand pic occasionnel pouvant amorcer une fissure qui se propagera ensuite aux contraintes plus petites [BHA 58] [GUR 82] [LEE 82] [LUH 82]. Le SRE \(\omega_0^2 z_{\text{eff}} \) est aussi quelques fois défini pour \(k = 1 \).

Le SRE est calculé :

- soit de manière exacte à partir de la valeur efficace de la DSP réponse déterminée avec la fonction de transfert [STA 76],
- soit à partir de la relation approchée [8.25] [SCH 81]. On choisit tout d'abord la surtension \(Q \) en fonction de l'expérience acquise sur le matériau concerné (5 à 15 en général) ou, plus généralement, on retient la valeur conventionnelle \(Q = 10 \).

Chaque point de la DSP est utilisé pour évaluer \(\omega_0^2 z_{\text{eff}} \) à l'aide de

\[R_i = k \sqrt{\frac{\pi}{2}} f_0 Q G_i \]

[8.26]

en procédant comme indiqué sur la figure 8.4 (calcul de \(R_i \) à chaque fréquence pour passer de la DSP au SRE).
Limite des méthodes approchées pour le calcul des réponses extrêmes :

La précision obtenue à partir de l'expression \(R = 3 \sqrt{\frac{\pi}{2}} f_0 Q G_i \) est d'autant meilleure que la surtension \(Q \) est plus grande. La précision est aussi fonction de la position de \(f_i \) par rapport aux bornes \(f_1 \) et \(f_2 \) de la DSP.

Cette remarque peut être illustrée à l'aide de l'exemple des figures 8.5 et 8.6, qui montrent une DSP et ses SRE tracés pour \(Q = 10 \) dans les conditions suivantes :

- avec la relation approchée \(R = 3 \sqrt{\frac{\pi}{2}} f_0 Q G \) où \(G \) est la valeur de la DSP à la fréquence \(f_0 \),
- a partir de la valeur efficace exacte de la réponse d'un système à un degré de liberté \(\omega_0^2 z_{eff} \), multipliée par 3,
- a partir du pic le plus grand (en moyenne) de la réponse d'un système à un degré de liberté sur une durée \(T \) égale à 10 s,
- comme en 3, mais sur une durée \(T \) de 3600 s.
On constate que :

- pour cette valeur de \(Q \), l'approximation n'est pas excellente (courbes 1 et 2 de la figure 8.6) dans le domaine de définition de la DSP et mauvaise à droite. L'erreur est importante lors des variations rapides de l'amplitude de la DSP,
- le spectre des valeurs extrêmes est nettement plus grand que trois fois la valeur efficace, même pour \(T \) petit.

Un autre exemple est celui d'une vibration mesurée sur un avion.

Les spectres de réponses extrêmes sont calculés à partir de la DSP de cet environnement (cf. figure 8.7) pour \(Q = 50 \) (cf. figure 8.8) et pour \(Q = 5 \) (cf. figure 8.9) :

- avec la relation approximée\(^{3} \sqrt{\frac{\pi}{2} f_0 Q G} \),
- avec \(3 \omega_0^2 z_{\text{eff}} \) (\(z_{\text{eff}} \) étant la valeur efficace exacte),
- avec le pic le plus grand pour une durée \(T = 1 \) heure.

Figure 8.7: Exemple d'une DSP d'une vibration mesurée sur un avion
On constate que pour :

- $Q = 50$, l'approximation est bonne, les spectres à $3 \omega_0^2 z_{eff}$ étant par ailleurs très inférieurs à la courbe donnant le pic le plus grand,
- $Q = 5$, les trois spectres sont sensiblement différents.

8.4. **Rappel historique**

Jusqu’au début des années 80, les spécifications d’environnement étaient extraites de documents normatifs qui proposaient des épreuves à caractère forfaitaire très enveloppe des valeurs effectivement rencontrées dans les conditions réelles d’utilisation.

Les valeurs proposées dans ces documents ont été en général déterminées à partir de mesures. La transformation de ces mesures en spécifications a fait l’objet de plusieurs méthodes, la plus utilisée étant celle par enveloppe des densités spectrales de puissance (DSP). Elle consiste à calculer les DSP de plusieurs mesures effectuées en plusieurs points et/ou dans différentes conditions, puis à tracer leur enveloppe. Cette méthode, simple dans son principe, est toutefois très sensible à la manière dont est simplifiée l’enveloppe pour la transformer en spécification. La transformation environnement réel / spécification s’appuie sur la reproduction du contenu en fréquence des vibrations réelles et non pas sur une équivalence des effets mécaniques des vibrations. Dans sa version de base, elle ne tient pas compte des différences des durées des vibrations dont on calcule la DSP enveloppe (il existe une méthode dérivée plus élaborée qui permet de pallier cette lacune [LAL 02] utilisant la règle de réduction de durée issue de la loi de Basquin, mais elle est très peu utilisée). De ce fait, elle peut conduire à appliquer au matériel en essai sur une longue durée des niveaux vibratoires relatifs à une certaine plage de fréquences qui ne sont présents que pendant une courte durée dans l’environnement réel.

Toutes ces normes fournissent des listes de valeurs parmi lesquelles l’utilisateur doit choisir celles à inclure dans son cahier des charges.

Ces étapes sont toutes importantes. La plus technique est celle qui conduit à rechercher une vibration de même sévérité que toutes celles du profil de vie (ou d’une partie). Les méthodes sont a priori celles déjà citées.

8.5. **Validation des mesures**

Rappelons que la deuxième partie de l’annexe générale mécanique intitulée « Traitement du signal » est précisément destinée à apporter un support didactique en traitement du signal lors des différentes étapes de mise en œuvre des critères et outils de validation.

Les différents chapitres portent :
- sur l’échantillonnage des signaux,
- sur les signaux périodiques,
- sur les signaux aléatoires,
- un ensemble de compléments se rapportant à :
 - la classification des signaux,
 - les séries et transformées de Fourier,
 - la convolution,
 - les fonctions de pondération,
 - les transformées de Dirac,
 - les transformées de Hilbert,
 - les erreurs sur les grandeurs aléatoires.

Dans l’analyse de validation, on pourrait distinguer entre les critères ayant un caractère général et ceux ayant un caractère spécifique :

8.5.1. **Critères à caractère général**

8.5.1.1. **Les dérives de zéro**

On distingue deux types de dérive de zéro :
- offset permanent et constant, y compris avant le début d’apparition du phénomène physique dans le cas où celui-ci apparaît en cours de mesure,
 Offset Statique (SOS) : décalage par rapport au zéro de la valeur moyenne du signal avant le début du phénomène physique,
- dérive déclenchée à un instant quelconque sur la mesure, avec une évolution temporelle quelconque sur tout ou partie du signal,
 Offset dynamique (DOF) : évolution de la valeur moyenne du signal suite à l’apparition du phénomène physique en général il est accompagné par une dérive de la vitesse, vitesse obtenue par intégration de l’accélération. Sa caractérisation par une seule valeur supposerait de fixer les bornes d’intégration.
8.5.1.2. La saturation

Aucune saturation n’est tolérée dans la mesure où sa correction n’est pas possible.
La peur de saturer conduit souvent les équipes à dimensionner les étendues de mesure de façon beaucoup trop larges, et du coup à dégrader le bruit de quantification. Il vaut pourtant parfois mieux un signal légèrement saturé. Pour que le résultat d’un calcul de DSP ou de SRC soit notablement différent il faut que le signal soit fortement saturé.

8.5.1.3. Le pas de quantification

Exprimé par le rapport entre la résolution en accélération rapportée à la différence entre la valeur maximale et la valeur minimale mesurées
\[PM = \frac{\Delta a}{a_{\text{max}} - a_{\text{min}}} \]

8.5.1.4. Rapport Signal Bruit (SNR)

Ecart entre le SRC du bruit enregistré avant le début de la mesure, (appelé bruit de référence) et celui de la partie du signal qui démarre 1 ms avant la détection de l’apparition du phénomène physique et qui a la même durée que le bruit de référence (20 ms par exemple).

8.5.1.5. Dissymétrie du signal (MMR)

Cas d’une vibration : écart entre le SRE de la partie positive du signal et celui de sa partie négative
\[MMR = |SRE^+ - SRE^-| \]

Cas d’un choc : écart entre le SRC de la partie positive du signal et celui de sa partie négative
\[MMR = |SRC^+ - SRC^-| \]

8.5.1.6. La stationnarité

Au sens strict, exprime la constance de tous les moments centrés au cours de l’évolution du signal. Au sens large, on limite la réalisation de cette exigence aux moments centrés :
- d’ordre 2 : valeur efficace,
- d’ordre 3 : asymétrie (skewness),
- d’ordre 4 : aplatissement (kurtosis),

8.5.2. Critères à caractère spécifique

8.5.2.1. Cas des chocs pyrotechniques

Les valeurs des limites ci après sont extraites de la référence [HDD]

8.5.2.1.1. Les dérives de zéro

Celle-ci donne un critère sur la vitesse décliné en deux variantes selon le type de choc rencontré:
- **choc à variation de vitesse nulle** : la mesure est à rejeter si la valeur moyenne de la vitesse, calculée sur toute la durée de l’enregistrement, dépasse les valeurs extrêmes enregistrées lors du transitoire temporel,
- **choc à variation de vitesse non nulle** : la mesure est à rejeter si la valeur de la vitesse à la fin de l’enregistrement dépasse d’un facteur 2 la valeur de la variation de vitesse attendue.

8.5.2.1.2. Le pas de quantification

Le pas de quantification PM est défini au paragraphe 8.5.1.3. Les critères de validation sont :
8.5.2.1.3. Rapport Signal Bruit

- PM $< 0.5 \%$ mesure retenue,
- $0.5 \% < PM < 5 \%$ mesure acceptable avec réserve,
- PM $> 5 \%$ mesure rejetée.

8.5.2.1.4. Dissymétrie du signal

- SNR $> 6 \text{ dB}$ sur toute la bande d’analyse mesure retenue,
- SNR $< 6 \text{ dB}$ sur moins de 20 % du spectre mesure acceptable avec réserve,
- SNR $< 6 \text{ dB}$ sur plus de 20 % du spectre mesure rejetée.

8.6. Synthèse de l’environnement sans prise en compte du SDF

8.6.1. Illustration sur un signal non stationnaire des inconvénients de la méthode des enveloppes de DSP.

Un environnement réel n’est pas stationnaire si sa valeur efficace varie en fonction du temps sur une durée plus ou moins grande (changement de vitesse d’un véhicule routier, turbulences lors d’un vol avion, etc.). Dans un tel cas, il n’est pas correct de calculer une densité spectrale de puissance pour représenter le phénomène et il n’est donc pas possible d’établir une spécification par enveloppe des DSP.

Exemple : La figure 8.10 présente un signal manifestement non stationnaire, dont on a calculé la valeur efficace globale sur 5 secondes pour donner un ordre de grandeur, sachant que cette valeur efficace n’est pas très significative puisqu’elle varie en fonction du temps. La figure 8.11 en donne les variations, qui sont très prononcées.

![Figure 8.10: Vibration non stationnaire par variation de sa valeur efficace en fonction du temps](image)

La durée a été ici limitée à 5 s, mais elle pourrait être beaucoup plus grande. Le calcul de la DSP d’un tel signal est mathématiquement possible (cf. figure 8.12), bien que sans valeur (moyenne de blocs ayant une valeur efficace différente pour des raisons non liées à la nature aléatoire du signal).
Figure 8.11: Variation en fonction du temps de la valeur efficace de la vibration non stationnaire de la figure 8.10

Figure 8.12: DSP de la vibration non stationnaire de la figure 8.10

Pour montrer l’erreur commise en utilisant cette DSP comme spécification, nous l’avons comparée à celle déduite d’un spectre de dommage par fatigue calculé directement à partir du signal en fonction du temps (cf. figure 8.13).
Les spécifications obtenues sont très différentes, à la fois en ce qui concerne le contenu en fréquence et la valeur efficace. Les conséquences de ces différences se retrouvent sur leurs SRE et SDF (cf. figures 8.14 et 8.15).
La spécification qui serait issue de la DSP du signal sous-estime nettement la sévérité de la vibration quel que soit le critère (SRE ou SDF).

Dans le cas des vibrations non stationnaires (ou non gaussiennes), les SRE et SDF doivent être calculés directement à partir du signal en fonction du temps. La spécification déduite de ce SDF est exprimée sous la forme d’une DSP d’une vibration aléatoire stationnaire gaussienne (les logiciels de pilotage ne savent générer aujourd’hui que des vibrations de ce type) qui produit à chaque fréquence propre le même dommage et la même contrainte maximale que la vibration de l’environnement réel.

8.6.2. Cas d’un emport sous avion

La démarche décrite ci-dessous a été réalisée dans le cadre d’un programme international. Le but est de montrer un exemple de construction de spécifications d’essai à partir de mesures en vol d’emport, sans utiliser les SRE/SDF, mais uniquement les DSP avec une analyse des valeurs efficaces en fonction des paramètres de vol.

8.6.2.1 Plan d’essais - Mesures en vol

Une ou plusieurs campagnes d’essais en vol avec des maquettes d’emport instrumentées sont réalisées pour caractériser l’environnement, et le décliner en termes de sévérités d’essai. L’instrumentation couvre généralement tous les équipements de la maquette ou de l’interface avion/maquette. Cela conduit à un nombre important de voies de mesure en accélération (50 à 100 voies de mesure par maquette par exemple). Ces mesures sont réalisées suivant un programme d’essai adapté pour caractériser l’environnement (data gathering); les situations de vol quadrillent le domaine de vol alternant les phases de vol stationnaire (palier) et instationnaires enchaînant des manœuvres telles que tonneaux, virages avec fort facteur de charge, sortie des aérofreins, etc. Les mesures sont extraites suivant des intervalles de temps sélectionnés à partir des principaux paramètres de vol, connus pour être influents en fonction de l’avion porteur : la vitesse, le nombre de Mach, l’altitude, le facteur de charge, l’incidence, le dérapage, etc.…. La configuration de l’avion avec la présence ou non d’armement voisin est également un paramètre à prendre en compte dans l’analyse des mesures. Le nombre de situations de vol balayées est ainsi généralement supérieur à 100. D’où un nombre de données de l’ordre de 10000 (avec 100 voies de
mesure) pour une campagne d’essai. Ces essais génèrent donc à un flot de données très important nécessitant de mettre en place des outils de traitement efficaces qui emploient dans notre cas, des méthodes adaptées et reconnues internationalement pour analyser et décliner ces mesures en termes de spécifications dans un contexte industriel.

8.6.2.2. Analyse des mesures

La première étape consiste à valider et à analyser les mesures, en fonction des situations de vol. Les anomalies de mesure sont inévitables sur un grand nombre de voies (problème sensibilité du capteur, faux contacts, erreurs sur l’axe de détection, etc…). Une analyse dès le premier vol permet de réagir rapidement et d’intervenir sur l’instrumentation pour corriger les erreurs. Le suivi des niveaux d’accélération en fonction des paramètres de vol permet de vérifier la cohérence et d’en extraire des règles permettant d’extrapoler avec une bonne confiance les niveaux à l’ensemble du domaine de vol, quand les essais ne couvrent pas tout le domaine.

8.6.2.3. Pression dynamique – valeur efficace

Pour un matériel aéroporté en charge extérieure, le vol d’emport se caractérise par plusieurs sources d’excitation :
- des excitations structurales se transmettant par les points d’interface avec le porteur,
- des excitations d’origine aérodynamique.

Dans les phases de vol stationnaires (palier) l’excitation aérodynamique s’avère être la principale source d’excitation. Elle prend le dessus par rapport à l’excitation dont les caractéristiques fréquentielles sont telles, que les premiers modes de structure sont faiblement excités. A contrario, ils peuvent l’être fortement dans le cas de certaine phase instationnaire (manœuvres, buffeting). Si bien qu’un paramètre important régissant les ambiances vibratoires est la pression dynamique. L’approche s’appuie sur l’analyse de la valeur efficace signal temporel mesuré en fonction de la pression dynamique. Plusieurs campagnes de vol sur différents porteurs et matériels ont montré que la loi d’évolution préconisée par les normes anglo-saxonnes (une droite en échelle log-log) est bien vérifiée, en particulier lorsque le point d’emport est situé sous le fuselage et comme illustré en figure 8.16.

![Valeur efficace en fonction de la pression dynamique](image-url)
Si \(\lambda \) est la pente de la droite on a pour deux points de vol 1 et 2

\[
\frac{g_1}{g_2} = \left(\frac{p_1}{p_2} \right)^{\lambda}
\]

où \(g_i \) et \(p_i \) sont respectivement la valeur efficace et la pression dynamique du point de vol \(i \).

Cette loi est utilisée :

- pour extrapoler si nécessaire, de manière conservative en prenant \(\lambda \) majorant, les valeurs efficaces à partir des points de vol mesurés et couvrir tout le domaine de vol,
- pour caractériser tous les points de vol en termes de DSP, (cf. chapitre 4),
- pour prendre en compte dans l’élaboration des sévérités d’essai la fatigue équivalente à un profil de vie donné : point discuté au chapitre 5. L’approche est cette fois conservative en prenant \(\lambda \) minorant.

8.6.2.4 Contenu fréquentiel

De même le contenu fréquentiel et son évolution en fonction des paramètres de vol est analysé. Les DSP sont calculées, par situation de vol, avec une résolution fréquentielle comprise entre 1 et 2 Hz. L’environnement avec son contenu fréquentiel est modélisé en fonction de la pression dynamique, pour chaque voie de mesure, en construisant un gabarit homothétique qui encadre l’enveloppe des DSP des mesures pour une plage de pression dynamique donnée. La valeur efficace de ce gabarit, par plage de pression dynamique, suit alors la loi

\[
\frac{g_1}{g_2} = \left(\frac{p_1}{p_2} \right)^{\lambda} : \text{voir l’exemple donné figure 32.}
\]

On obtient en termes de DSP :

\[
\frac{d_{sp_1}}{d_{sp_2}} = \left(\frac{p_1}{p_2} \right)^{2\lambda}, \quad \text{où } d_{sp_i} \text{ et } p_i \text{ sont respectivement la densité spectrale de puissance et la pression dynamique du point de vol } i.
\]

Cette approche peut être effectuée en regroupant certaines phases de vol, par exemple en deux catégories : phases stationnaires et phases instationnaires. Enfin un coefficient est appliqué sur les enveloppes de DSP pour prendre en compte les dispersions liées aux mesures et aux matériels.

8.6.2.5 Durée d’essais pour couvrir le Profil de vie
Pour spécifier une sévérité d’essai équivalente en termes de fatigue, sans utiliser le SDF, les profils de vols du matériau en emport sous avion sont découpés par tranche de pression dynamique. Cela conduit à un histogramme donné à la figure 8.18.

La répartition des durées d’une part, et les relations entre les valeurs efficaces et la pression dynamique d’autre part, permettent de réduire chaque durée relative à une tranche de pression dynamique, en augmentant son niveau jusqu’au niveau le plus élevé correspondant à la pression dynamique maximale. La loi de Basquin est utilisée.

La durée totale \(\sum t_i \) de vol est équivalente en terme de fatigue, à une durée d’essai de :

\[
t_{\text{équivalente}} = \sum_{i=1}^{n} \left(\frac{g_i}{g_n} \right)^b t_i, \quad \text{avec d’autre part} \quad \frac{g_i}{g_n} = \left(\frac{P_i}{P_n} \right)^{\lambda} \quad n \quad \text{étant le nombre de tranche de pression dynamique.}
\]

Les normes anglo-saxonnes préconisent un paramètre \(b \) de 5 (d’où la dénomination « fifth power law »)

Le niveau d’essai, appliqué pendant une durée équivalente \(t \), est défini avec un gabarit en DSP enveloppant toutes les situations, majoré d’un coefficient pour s’affranchir des dispersions. Cette approche, n’utilisant pas les SRE / SDF, conduit à des durées d’essai contractées, pouvant atteindre par exemple 10 heures équivalentes à 100 heures car l’avion ne vole pas toujours à plein badin.

\[\text{Figure 8.18: Histogramme – profils de vol}\]

8.6.2.6. Avantages et limites

Cette approche a l’avantage d’être assez simple à déployer pour traiter un volume de données important. Elle permet également de comparer aisément deux profils de vol différents en termes de fatigue.

Cette approche conduit à un résultat théoriquement identique à une approche SDF, à condition que la loi en en puissance soit vérifiée. C’est-à-dire que les figures 1 et 2 représentent fidèlement toutes les mesures en vol, pour les phases stationnaires comme pour les phases instationnaires.
En pratique, selon les types de matériels, des écarts plus ou moins importants par rapport à ce modèle sont rencontrés. Par exemple des écarts dus :

- à des phénomènes aérodynamiques pouvant apparaître à certaine vitesse (par exemple sifflements acoustiques),
- à la présence de « raies moteur » qui ne suivent pas la loi \(\frac{g_i}{g_n} = \left(\frac{P_i}{P_n} \right)^\lambda \),
- à une évolution des basses fréquences différente comparée aux hautes fréquences.

Pour combler ces écarts de représentativité, des marges sur le gabarit d’essai peuvent être prises en compte pour s’assurer que l’essai couvre le profil de vie en termes de fatigue. Ces marges conduisent à sur tester par rapport à l’approche SDF.

Cette approche, n’utilisant pas le SRE, peut être délicate également dans la gestion des phases instationnaires de courte durée (5 à 10 sec). Le calcul de DSP n’est pas adapté pour prendre en compte l’instationnarité et envelopper l’effet du pic maximal, contrairement au SRE. Une « technique » utilisée dans le cadre d’un projet international fut d’utiliser le SRE dans les phases in-stationnaires, en en déduisant une DSP équivalente. Une valeur de Q assez importante fut alors adoptée pour ne pas trop lisser les phénomènes bande étroite.

Une approche SDF/SRE avec une valeur de Q trop faible, a l’inconvénient de trop « lisser » les spectres et peut conduire à sous-tester considérablement. Par exemple, une valeur de Q = 10, est adaptée seulement aux premiers modes de structure (fréquences < 200 Hz). A lors que résonances de cartes électroniques (fréquences > 300 Hz) sont associées à des valeurs de Q proches de 50, voire davantage.

8.6.3. **Cas de transports logistiques ou de transports ou d’emports tactiques**

Dans l’approche par enveloppe de DSP, on appliquera la démarche recommandé au paragraphe 2.1 pour déterminer les environnements à simuler.

8.7. **Détermination des données qui caractérisent les agents d’environnement : leur origine et le niveau d’assemblage auquel elles se rapportent**

<table>
<thead>
<tr>
<th>Phase du programme</th>
<th>Données</th>
<th>Niveau d’assemblage</th>
<th>Responsable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faisabilité conduisant au CdCF</td>
<td>Caractériser chaque situation du Profil de Vie par des agents d'environnement à retenir à priori en s’aidant : De valeurs typiques synthétisées à partir de relevés antérieurs d'environnement réel (Banques de Données), De modèles de calcul de l'environnement réel validés par l'expérience, De mesures spécifiques « in situ » d'environnement réel dans des conditions représentatives de l’emploi futur du système</td>
<td>système client</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phase du programme</th>
<th>Données</th>
<th>Niveau d’assemblage</th>
<th>Responsable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faisabilité conduisant au CdCF</td>
<td>Déterminer les valeurs de chacun des agents d'environnement à l'aide : De valeurs typiques synthétisées à partir de relevés antérieurs d'environnement réel (Banques de Données), De modèles de calcul de l'environnement réel validés par l'expérience, De mesures spécifiques « in situ » d'environnement réel dans des conditions représentatives de l’emploi futur du système client</td>
<td>système client</td>
<td></td>
</tr>
</tbody>
</table>

Norme Défense
© DGA 2009 – Tous droits réservés
<table>
<thead>
<tr>
<th>Phase du programme</th>
<th>Données</th>
<th>Niveau d’assemblage</th>
<th>Responsable</th>
</tr>
</thead>
</table>
| Phase de définition conduisant à la STB | Mettre à hauteur les valeurs correspondantes de chacun des agents d'environnement, à l'aide des nouveaux éléments acquis :
- Nouvelles valeurs synthétisées à partir de relevés antérieurs d'environnement réel (Banques de Données),
- Modèles de calcul intégrant les données d’environnement réel validé par l'expérience,
- Résultats d'essais partiels,
- Nouvelles mesures spécifiques « in situ » d'environnement réel. Cette détermination doit, autant que possible, conduire à caractériser la loi de répartition des valeurs prises, sa moyenne et son écart-type. Il est à noter que les lois de distribution de l'environnement réel ne sont pas toujours des processus gaussiens.
Définir les domaines d’environnement où le fonctionnement (ou le stockage) du matériel est normal, limite et extrême pour chaque critère d'appréciation caractérisant chaque fonction de service. | Tous | M.O.I. et sous traitants |
| DD | Lister, pour chaque fonction technique (41), à chaque niveau d’un critère d’appréciation et dans chaque situation, les agents d'environnement correspondants, leurs valeurs, les dispositions contractuelles pour actualiser ces valeurs au cours des phases ultérieures (en particulier pour certaines situations où les niveaux donnés sont intimement liés au choix de conception de la responsabilité de l’industriel),
Donner les éléments utiles à la classification en domaines d’environnement où le fonctionnement (ou le stockage) du matériel est normal, limite et extrême et ceci à chaque niveau d'un critère d'appréciation de chaque fonction technique,
Donner pour chaque fonction technique et en regard de chaque valeur spécifiée (ou déduite des valeurs spécifiées), la valeur retenue correspondante (le passage de l'une à l'autre se faisant par l'application du coefficient de garantie),
Rappeler la probabilité de défaillance acceptée pour chaque critère d'appréciation considéré vis-à-vis de chaque agent d'environnement (ou du paramètre qui le caractérise) auquel il est sensible,
Définition des validations à effectuer (calculs, simulations, essais) - Qualification du matériel en environnement :
Lister les actions de validation couvrant chaque objectif de validation (le type de démonstration choisi dépend du coût de la validation et du degré d’innovation du matériel en | Tous | M.O.I. et sous traitants |
Dans le cas où la démonstration est un essai en environnement, ces actions consistent à:

La définition de la sévérité de l'essai. Cette définition suppose la démarche suivante :
- synthèse des agents d'environnement à simuler à partir des caractérisations des agents d'environnement retenus, en utilisant les méthodes de synthèse propres à chaque agent; on prendra également en compte les effets particuliers résultant d'une combinaison de plusieurs agents d'environnement,
- transformation de l'environnement synthétisé en sévérité d'essai par la prise en compte :
 a. du facteur d'essai,
 b. des limitations imposées par les moyens d'essai (combinaison réalisable d'agents d'environnement, critères d'appréciation, etc.),
 c. des modes opératoires existant dans les normes (assurant la reproductibilité des essais),
 d. de l'état de la maîtrise de l'art dans la simulation de l'environnement considéré,
 e. éventuellement, des sévérités préférentielles proposées par les normes,

<table>
<thead>
<tr>
<th>Phase du programme</th>
<th>Données</th>
<th>Niveau d’assemblage</th>
<th>Responsable</th>
</tr>
</thead>
<tbody>
<tr>
<td>développement)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau 8-2: Détermination des données pour chaque phase d'un programme
CDCF

Fonctions de service

- Définir le Profil de Vie
- Identifier les fonctions de service et les caractériser :
 - Critères d’appréciation
 - Niveaux de ces critères
 - Limites d’acceptation
- Mettre en correspondance chaque fonction de service et les situations du profil de vie
- Identifier les éléments de faisabilité sensibles à l’environnement
- Etablir la liste des ambiances
- Déterminer les valeurs d’environnement associées à chaque situation du profil de vie (environnement spécifié)

- Objectifs de sûreté

STB

Fonctions de service

- Préciser la liste des fonctions de service
- Préciser, pour chaque fonction de service, le profil de vie (depuis mise à disposition jusqu’à retrait du service)
- Actualiser la liste des ambiances et les valeurs d’environnement associées pour chaque fonction de service et chaque situation
- Définir les domaines : normal, limite, extrême, accidentel, vis-à-vis des agents d’environnement pour chaque fonction de service
- Prendre en compte les effets induits par les choix de conception sur l’environnement
- Donner la probabilité de défaillance acceptée
- Donner une représentation statistique de l’environnement : déterminer l’environnement retenu
- Donner les orientations de démonstration liées à l’environnement

Calcul = essais

DD

Fonctions de service

- Lister pour chaque fonction technique les agents d’environnement correspondants
- Donner pour chaque fonction technique la valeur spécifiée et la valeur retenue dans l’environnement
- Donner dans le cas où la démonstration est un calcul ou une simulation, les valeurs de la variabilité des agents d’environnement considérés dans ces démonstrations
- Expliciter, dans le cas où la démonstration est un essai en environnement, la définition de la sévérité de l’essai : synthèse des agents d’environnement - transformation de l’environnement synthétisé en sévérité d’essai (facteur d’essai)
- Donner les éléments de justification pour ce qui concerne les fonctions techniques que la définition de la sévérité de l’essai répond bien à sa spécification.

Tableau 8-3 : Définition des phases d’un programme d’essai
Figure 8.19 : Schéma des différentes phases
<table>
<thead>
<tr>
<th>Phase du programme et document jalon</th>
<th>action</th>
<th>Valeurs d'environnement et/ou valeurs qui en découlent en entrée</th>
<th>en sortie</th>
<th>Niveau d'assemblage</th>
<th>Fonctions concernées service/technique</th>
<th>Renseignements nécessaires</th>
<th>Observations particulières</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faisabilité conduisant au CdCF</td>
<td>0</td>
<td>. valeurs type provenant de répertoires, de bases de données, valeurs refuge . valeurs issues de modèles de calcul . n valeurs mesurées pour un événement, une situation donnée</td>
<td>. une valeur représentant chaque événement d'une situation . paramètres caractéristiques de sa dispersion</td>
<td>système</td>
<td>X</td>
<td>. profil de vie système . description des fonctions de service . hypothèses sur modèles de comportement . niveau de confiance sur l'intervalle de confiance du CVE</td>
<td>les données seront décrites pour une situation, événement donné, sous la forme de valeurs, ensemble de valeurs (spectre ...) auxquelles sera associé un niveau de confiance et une loi statistique soit supposée, soit estimée à partir de mesures</td>
</tr>
<tr>
<td>définition conduisant à la STB</td>
<td>0</td>
<td>. valeurs précédentes (Cahier des Charges Fonctionnelles) réactualisées par par . de nouvelles mesures ou évaluations des valeurs . la prise en compte des effets induits par les choix de conception . indication du domaine normal, limite ou extrême d'appartenance de la valeur</td>
<td>. idem ci-dessus . ces valeurs constituent les valeurs d'environnement spécifiées</td>
<td>tous niveaux</td>
<td>X</td>
<td>. profil de vie tous niveaux d'assemblage . ensuite idem ci dessus</td>
<td>idem Cahier des Charges Fonctionnelles (CdcF)</td>
</tr>
<tr>
<td>Phase du programme et document jalon</td>
<td>action</td>
<td>Valeurs d'environnement et/ou valeurs qui en découlent en entrée</td>
<td>Niveau d'assemblage</td>
<td>Fonctions concernées service/technique</td>
<td>Renseignements nécessaires</td>
<td>Observations particulières</td>
<td></td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>--------</td>
<td>---</td>
<td>-------------------</td>
<td>--------------------------------------</td>
<td>---------------------------</td>
<td>-----------------------------</td>
<td></td>
</tr>
<tr>
<td>conception conduisant au DD</td>
<td>1</td>
<td>valeurs d'environnement spécifiées en STB aux différents niveaux d'assemblage</td>
<td>tous niveaux</td>
<td>X</td>
<td>. description des fonctions techniques . probabilité de défaillance tolérée . CVR déterministe provenant de répertoires ou estimé avec niveau de confiance sur l'encadrement . niveau de confiance sur l'intervalle de confiance de la résistance moyenne de la performance à l'agent d'environnement considéré</td>
<td>. les valeurs d'environnement spécifiées en regard d'une situation, d'un événement seront synthétisées par regroupement de plusieurs événements ou situations et conduiront à des valeurs d'environnement retenues . ces valeurs devront permettre d'orienter des choix de conception</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>. critères de dimensionnement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>. valeurs d'environnement retenues à utiliser pour les calculs et simulations . sévérités d'essais personnalisées</td>
<td>tous niveaux</td>
<td>X</td>
<td>. idem ci dessus et de plus : . niveau de confiance sur l'intervalle de confiance de la résistance moyenne de la performance à l'agent d'environnement considéré . nombre de matériels identiques soumis à un essai donné</td>
<td>. idem ci dessus . ces valeurs seront utilisées, soit dans les calculs et simulations, soit pour élaborer les sévérités d'essais personnalisées</td>
<td></td>
</tr>
<tr>
<td>validation de la conception</td>
<td>1</td>
<td>idem ci dessus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(conduisant au DJD des fonctions techniques)</td>
<td>4</td>
<td>. valeurs d'environnement retenues à utiliser pour les calculs et simulations . sévérités d'essais personnalisées</td>
<td>tous niveaux</td>
<td>X</td>
<td>. idem ci dessus mais pour fonctions de service</td>
<td>. idem ci dessus . les valeurs actualisées seront comparées aux valeurs correspondantes initialement retenues. En cas de dépassement, on actualisera si nécessaire les valeurs qui s'en déduisent</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>. valeurs d'environnement retenues à utiliser pour les calculs et simulations . sévérités d'essais personnalisées</td>
<td>tous niveaux</td>
<td>X</td>
<td>. idem ci dessus mais pour fonctions de service</td>
<td>. idem ci dessus . les valeurs actualisées seront comparées aux valeurs correspondantes initialement retenues. En cas de dépassement, on actualisera si nécessaire les valeurs qui s'en déduisent</td>
<td></td>
</tr>
<tr>
<td>validation du développement</td>
<td>2</td>
<td>idem ci dessus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(conduisant au DJD des fonctions de service)</td>
<td>3</td>
<td>. idem ci dessus mais pour fonctions de service</td>
<td>tous niveaux</td>
<td>X</td>
<td>. idem ci dessus mais pour fonctions de service</td>
<td>. idem ci dessus . les valeurs actualisées seront comparées aux valeurs correspondantes initialement retenues. En cas de dépassement, on actualisera si nécessaire les valeurs qui s'en déduisent</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>. idem ci dessus mais pour fonctions de service</td>
<td>tous niveaux</td>
<td>X</td>
<td>. idem ci dessus mais pour fonctions de service</td>
<td>. idem ci dessus . les valeurs actualisées seront comparées aux valeurs correspondantes initialement retenues. En cas de dépassement, on actualisera si nécessaire les valeurs qui s'en déduisent</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>. idem ci dessus mais pour fonctions de service</td>
<td>tous niveaux</td>
<td>X</td>
<td>. idem ci dessus mais pour fonctions de service</td>
<td>. idem ci dessus . les valeurs actualisées seront comparées aux valeurs correspondantes initialement retenues. En cas de dépassement, on actualisera si nécessaire les valeurs qui s'en déduisent</td>
<td></td>
</tr>
<tr>
<td>production (non intégré dans environnement spécialisé)</td>
<td>7</td>
<td>. mesures d'environnement caractérisant certains événements du processus de production</td>
<td>tous niveaux</td>
<td>X</td>
<td>. déroulement du processus de production . probabilité de défaillance tolérée en regard des environnements significatifs générés par le processus de production</td>
<td>. les valeurs synthétisées par événement significatif du processus de production seront comparées aux valeurs synthétisées de même nature du profil de vie. En cas de dépassement, on devra adapter le processus de production pour réduire les contraintes.</td>
<td></td>
</tr>
</tbody>
</table>
8.8. **Prise en compte des limitations des moyens d'essais**

8.8.1. **Limitations liées à la complexité de l'environnement vibratoire réel**

Multi-entrées
Conditions aux limites difficiles à identifier
Combinaison des modes d'excitation :
- conductif (structural) et
- radiatif (acoustique)

Caractère transitoire de certaines excitations
En vibrations :
- multitaxes simultanés (valable en chocs également),
- caractère non stationnaire de certaines excitations,
- distribution non Gaussienne.

L'environnement réel est très souvent le résultat d'agents d'environnement combinés
Est-il décomposable suivant un repère trirectangulaire ?
Le nombre de degrés de liberté est de six (trois translations plus trois rotations) et la simulation devrait tenir compte des interspectres respectifs

Obtient-on les mêmes effets en appliquant successivement les projections suivant chacun des axes ?
Si on admet la décomposition trirectangulaire, l'application successive des 3 projections peut conduire à des sous-tests. Certains auteurs préconisent un coefficient multiplicatif égal à 1,3. Ce coefficient est à prendre en compte si les vibrations sur chacun des 3 axes sont d'amplitude comparable, ce qui n'est pas souvent le cas.

Remarque : L'emploi d'un bâti d’essai dont le repère est décalé angulairement par rapport à celui du moyen d’essai (générateur de vibration ou machine à choc) afin de chercher à reproduire les effets d’un environnement triaxial doit être utilisé avec beaucoup de circonspection.

8.8.2. **Limitations liées aux performances des moyens de génération des vibrations et des chocs**

Les moyens d’essai sont limités en déplacement, vitesse et force. Par exemple les excitateurs électrodynamiques ont généralement une vitesse maximale de 1,7 m/s et un déplacement maximum de un ou deux pouces.

Remarque : La bonne application de l'environnement suppose d'une façon générale que les paramètres caractérisant la sévérité de l'essai soient à l'intérieur des limites de tolérances prévues par le STANAG 4370. Les non respects de tolérances doivent être acceptés par le client, avant le début de l'essai.
8.8.3. Limitations liées aux moyens de pilotage

En sinus balayé :
- vitesse de compression élevée, d'où temps de réaction très faible dans la boucle d'asservissement (nécessité d'un dispositif de sécurité particulier si le matériel en essai est fragile),
- vitesse de balayage limitée.

En aléatoire :
- nombre de bandes d'analyse généralement limité à 80 en analogique,
- dynamique entre deux points successifs d'une DSP,
- pré-test pour acquisition de la fonction de transfert de l'installation,
- troncature du signal,
- temps de boucle,
- ...

8.8.4. Limitations résultant de la difficulté à recréer l'interaction dynamique entre matériel et son porteur

Il faut reproduire correctement :
- les forces d'excitation,
- les conditions aux limites convenables.

8.8.5. Limitations dues à la difficulté à recréer les vraies conditions initiales

Exemple: Baie suspendue soumise à un choc mécanique par impulsion
- Simulation: A l'aide d'une machine à choc en mode impact (mise en vitesse par chute libre)
- Précautions à prendre:
 - au lâcher de la table, la baie est soumise à un échelon d'accélération de 1 g (réponses oscillatoires autour de la fréquence propre),
 - vérifier que l'amplitude de la réponse est suffisamment faible avant impact, à partir de:
 - la hauteur de chute
 - la fréquence et l'amortissement de la suspension de la baie
 - la masse de la baie, relativement à celle de l'équipage mobile de la machine

8.8.6. Autres Limitations

8.8.6.1. Cas des grandeurs aléatoires :

Les grandeurs aléatoires ne sont connues que dans un intervalle de confiance avec un niveau de confiance donné. Les conséquences sont :
- incertitude sur la connaissance de l'environnement réel lorsqu'il a un caractère aléatoire,
- incertitude sur la sévérité de l'essai lorsqu'il est spécifié par une grandeur aléatoire,
- difficulté à discriminer la partie déterministe et la partie aléatoire dans un signal aléatoire,
- bruit à bande large + bruit à bande étroite ou sinus,
- transitoire + bruit,
- l'extraction est parfois possible par utilisation de méthodes spécifiques.

Dans tous ces cas, le résultat de l'analyse dépend directement de la durée de la fenêtre d'analyse utilisée et de sa forme.

8.8.6.2. Etat de l'art: ce qui est possible avec les technologies du moment
Les tolérances sur les exigences des grandeurs utilisées en essais d'environnement sont spécifiées par des EMT (écart limite acceptable) indiqués dans les normes. Le témoin de l'environnement est destiné à vérifier qu'elles sont bien tenues. Les actions possibles pour respecter ces exigences portent sur :

- la stratégie de pilotage,
- le choix du représentant de la grandeur "pilotée": valeur crête (vraie ou estimée), valeur efficace (dans quelle bande), fondamental, ...obtenu à partir de une plusieurs voies identifiées: moyenne, sup,
- l'utilisation du notching.

Les signaux de type composites, tel que Sinus plus Bruit, sont limités par :

- dans le cas du sinus plus bruit, la phase entre les raies n’est pas prise en compte,
- en aléatoire :
 - on note l'absence de contrôle sur la distribution des valeurs instantanées. Seule la distribution normale est prise en compte,
 - les tailles de blocs sont encore limitées: il est encore usuel de travailler avec des blocs de 1024 points alors qu’il en faudrait souvent bien davantage,
 - la limite en fréquence basse de la connaissance du spectre,
 - la résolution est éventuellement insuffisante,
 - il existe un risque de troncature,
 - la rapidité de traitement dans la boucle permet d'avoir un pourcentage de temps réel suffisant et détermine la rapidité de réaction à une évolution du signal au point de pilotage.

8.9. Compléments sur l’organisation du programme d'essai

8.9.1. Travaux relatifs au procédé d'essai

8.9.1.1. Représentativité du procédé d'essai

La représentativité d'un procédé d'essai dépend de plusieurs facteurs, pouvant participer à l'identification des composantes de l'incertitude, parmi lesquels on peut citer :

- le degré d'adéquation des conditions d'essais réalisables par rapport aux conditions réelles d'utilisation, notamment vis à vis des spécifications relatives à l'environnement réel,
- le degré d'adéquation de l'essai effectué par rapport aux conditions d'essais spécifiées,
- le degré de prise en compte du cumul des contraintes, s'il y a lieu,
- le degré de prise en compte de la chronologie et de l'enchaînement de l'application des contraintes,
- le degré de couverture des résultats attendus vis à vis du domaine d'utilisation spécifié,
- l'opportunité d'un essai en conditions accélérées simulant un fonctionnement réel,
- le choix adéquat du nombre de spécimens à essayer dans le cas où l'on a des valeurs probabilistes à démontrer (cas des essais de fiabilité),
- l'aptitude du dispositif d'essai à ne pas engendrer de perturbations sur l'essai ni sur le spécimen,
- le degré de représentativité d'un plan d'expérience utilisé par rapport à une démarche qui consisterait à réaliser l'ensemble des essais,
- l'influence du comportement humain soit en tant qu'opérateur, soit en tant que partie prenante du procédé d'essai.

Tous ces éléments sont en fait relatifs à la construction de la représentativité du procédé d'essai, ils peuvent être complétés par d'autres éléments permettant de donner l'assurance de cette représentativité. Cette assurance que l'on a de la représentativité dépend aussi du degré d'expérience antérieure sur l'adéquation de l'essai vis-à-vis du fonctionnement réel et des apports des connaissances acquises lors d'autres démonstrations.
La représentativité du procédé d'essai est examinée au cours de sa conception (adéquation entre le besoin d'essai et la définition du procédé), au cours de la réalisation de la procédure d'exécution de l'essai et au cours du traitement des résultats (adéquation entre les résultats obtenus et ceux espérés sur le produit). Le traitement des données (surtout lorsqu'il fait appel à des relations théoriques) doit être prévu dès la conception du procédé d'essai.

8.9.1.2. Conception du procédé d'essai

8.9.1.2.1. Éléments d'entrée du procédé d'essai

Pour la réalisation de l'essai, il est nécessaire de considérer simultanément :
- la méthode d'essai,
- le moyen d'essai,
- les critères de qualification du personnel impliqué,
- le spécimen et les interfaces avec le dispositif d'essai.

En effet, pour un même résultat, on peut choisir un banc rudimentaire fiable avec un personnel très qualifié ou un banc entièrement automatisé avec des opérateurs moins qualifiés.

De même, la méthode d'essai dépend de la représentativité du spécimen (représentation partielle ou totale, échelle, etc.).

La méthode et le moyen d'essai peuvent :
- être définis par une norme ou imposés par le client,
- être créé pour les besoins de l'essai (conception spécifique ou adaptation de procédés existants).

La méthode d'essai retenue sera fonction :
- du type d'essai à réaliser (par exemple destructif ou non destructif, contrôle du produit ou du processus de fabrication),
- de la liste des contraintes de toute nature (technique, financière, calendaire, etc.), de leur sévérité et de leur simultanéité éventuelle,
- du niveau de sécurité nécessaire,
- des critères de performance (répétabilité, reproductibilité, seuil de détection, ...),
- des incertitudes de mesure désirées sur le résultat de l'essai.

Une fois la méthode d'essai déterminée, le moyen d'essai sera choisi en fonction des mêmes critères que ceux énoncés pour le choix de la méthode, mais aussi des critères suivants :
- existence et disponibilité du moyen d'essai,
- performances du moyen d'essai,
- couverture du domaine,
- capacités des moyens de mesure et informatique,
- productivité,
- influence du moyen d'essai sur les performances du spécimen.

L'absence d'un moyen d'essai adapté entraîne, s'il n'est pas possible d'en réaliser un nouveau, le choix d'une autre méthode d'essai et dans ce cas on évaluera les risques que l'on prend à ne pas réaliser la démonstration telle qu'on l'avait préalablement définie.

Le concepteur de l'essai détermine les conditions d'essai, au vu des données collectées ci-dessus et en exploitant les expériences acquises sur des produits similaires.

8.9.1.2.2. Éléments complémentaires
Les données relatives aux conditions réelles d'utilisation que l'on cherche à recueillir sont :

- les paramètres de l'environnement réel : climatique, thermique, mécanique, électromagnétique, poussières, etc.,
- les interfaces avec le spécimen : mécaniques, électriques, logicielles, humaines, etc.,
- l'environnement «physique» (quels autres constituants du produit sont présents au voisinage du spécimen),
- les caractéristiques d'usage : temps d'utilisation, de stockage, durée de vie envisagée, le profil de vie du produit,
- les contraintes de sécurité : tenue au feu, sécurité électrique, écotoxicité, etc.,
- les contraintes de recyclage.

Selon que l'essai porte sur un spécimen représentatif d'un composant, d'un sous-ensemble ou d'un système complet, il est plus ou moins facile de définir les contraintes d'environnement auxquelles il sera soumis.

Le concepteur du procédé d'essai doit également prendre en compte un certain nombre de données qui sont :

- la définition du nombre d'essais et de spécimens,
- l'existence éventuelle de prises d'essai,
- la définition du nombre de mesures, le choix des capteurs, la prise en compte de leur impact sur la mesure,
- la définition ou l'adaptation des moyens d'essai :
 - conception, réalisation, installation des montages d'essai,
 - conception, réalisation, installation des dispositifs de simulation de l'environnement,
 - prise en compte de la sécurité des personnes et des biens,
 - prise en compte des contraintes liées à la manutention du spécimen ; la définition des incertitudes sur les mesures,
- l'élaboration ou le choix des matériels et programmes informatiques d'acquisition et de dépouillement,
- les critères de qualification des opérateurs,
- la planification et la coordination de la réalisation (étapes, chronologie, etc.), y compris, s'il y a lieu, la confirmation du plan d'expériences,
- la définition des responsabilités et des ressources pendant la réalisation de l'essai.

8.9.1.2.3.Éléments de sortie de la conception du procédé d'essai

Le processus de conception du procédé d'essai s'achève par la description de la méthode d'essai choisie, dûment validée, et l'élaboration du dossier de définition du dispositif d'essai.

Ce dossier de définition contient les informations nécessaires et suffisantes pour fabriquer, instrumenter et contrôler les différents éléments du dispositif d'essai incluant les interfaces avec le spécimen.
Ces éléments de sortie doivent prendre en compte les contraintes de coûts et de délais.
8.9.1.2.4. Revue de conception du procédé d'essai

Le but de cette revue est d'examiner et fournir les éléments permettant au prestataire d'essai de s'assurer que :

- la méthode d'essai retenue satisfait le besoin de l'essai.
- le dispositif d'essai est réalisable et possède les propriétés nécessaires et suffisantes pour atteindre les objectifs de l'essai.

Cette revue doit permettre également d'assurer l'adéquation entre la méthode d'essai retenue, le dispositif d'essai réalisé et le spécimen soumis à l'essai.

Il convient préalablement à cette revue de faire un examen des éléments d'entrée de la conception. En effet, pendant les travaux de conception du spécimen, le besoin d'essai peut avoir évolué pour des raisons indépendantes de l'essai envisagé (apparition de faits techniques sur le produit, regroupement de plusieurs essais, évolution de la réglementation, exigences nouvelles du client, contraintes du prestataire d'essai).

8.9.1.2.5. Justification du choix de la méthode d'essai

Un mauvais choix de la méthode d'essai peut conduire à ne pas satisfaire la totalité des objectifs de l'essai. À ce stade, les causes possibles peuvent être :

- mauvais choix du type (principe physique) de l'essai.
- application séparée dans le temps de contraintes appliquées simultanément dans la réalité. Représentativité insuffisante des conditions réelles d'utilisation du produit (environnement, facteur d'échelle, essai de vieillissement accéléré).
- mauvais enchaînement des essais.
- mauvaise sélection des paramètres à reproduire (déterminés, par exemple, au travers d'un plan d'expérience).
- difficulté ou impossibilité de réalisation du dispositif d'essai associé.
- contraintes économiques.

L'examen de ces paramètres doit conduire à la validation de la méthode d'essai retenue.

8.9.1.2.6. Justification de la conception du dispositif d'essai

Cette action vise à démontrer la conformité du dossier de définition du dispositif d'essai aux conditions d'essais spécifiées.

En effet, la définition détaillée des moyens d'essai peut conduire à dégrader la représentativité de l'essai. À ce stade, les causes possibles peuvent être :

- impact de l'environnement d'essai mal apprécié (autre que les conditions à réaliser).
- indisponibilité des moyens matériels (génération des conditions, mesure et enregistrement),
- insuffisance des ressources humaines (disponibilité, quantité, compétence, ...),
- incidence des interfaces et de l'instrumentation sur les mesures,
- contraintes économiques.
8.9.2. Réalisation du dispositif d'essai

Les éléments d'entrée sont constitués du dossier de définition préalablement validé sur lequel s'appuie le réalisateur pour établir ses documents de fabrication et de contrôle.

Les éléments matériels du dispositif d'essai (moyens d'essai, interfaces avec le spécimen, ...) ainsi fabriqué: constituent les éléments de sortie de la réalisation. Les modes opératoires nécessaires à la mise en œuvre du dispositif sont élaborés.

L'ensemble de ces éléments doit permettre d'effectuer les contrôles prévus par le concepteur afin de s'assurer de la capacité du procédé d'essai à répondre aux objectifs de l'essai.

En cas de non-conformité avec la définition prévue, il met en œuvre une procédure de traitement spécifique préalablement définie en fonction de ses conséquences sur les objectifs de l'essai.

8.9.3. Validation de la conception de l'essai

Le but de cette validation est d'examiner tous les éléments relatifs au spécimen ou à l'échantillonnage et ai, procédé d'essai permettent de justifier que l'objectif de l'essai peut être atteint. Elle doit être faite par l'ensemble des parties prenantes et aboutir à la finalisation du protocole technique de réalisation.

8.9.4. Coûts et délais

Le protocole technique de réalisation doit comprendre les informations sur le coût de la réalisation de l'essai et les délais associés (durée et créneaux disponibles).

Pour mémoire, le programme d’essais est ensuite réalisé et fait l’objet d’une revue de contrat, présentées succinctement ci après.

8.9.5. Réalisation de l’essai

Après engagement contractuel entre les deux parties, matérialisé par la signature du « contrat de réalisation » ou du « protocole technique de réalisation » (voir NF X 50 141-1), le prestataire réalise l’essai en se conformant au> exigences de son système de management de la qualité, conforme à la norme NF EN ISO/CEI 17025 ou à un référentiel équivalent. Une attention particulière est portée à la compétence des personnes qui réalisent l'essai.

8.9.6. Revue de contrat d'exécution

Avant l'engagement contractuel qui déclenche les travaux, le prestataire et le demandeur peuvent être amenés à faire une revue de contrat. Dans ce cas, elle se fera selon les dispositions décrites dans la Norme NF EN ISO/CEI 17025 ou un référentiel équivalent.

La revue de contrat porte en premier lieu sur l'examen des réponses apportées aux différents points du protocole technique ; les éléments non mentionnés, par exemple pour des raisons de protection du savoir-faire du prestataire, font l'objet d'un examen particulier.

8.10. Réduction de durée d’essai - Exemple

Considérons un profil de vie composé de deux situations, comprenant un transport par camion de durée 20 heures (valeur efficace : 3 m/s²) et un vol de missile de durée 5 minutes (valeur efficace : 27,6 m/s²). Les durées et les amplitudes sont très différentes. Les DSP sont tracées figures 8.19 et 8.20.

La spécification, établie à partir de la somme des SDF de ces deux vibrations (tracés pour Q = 10 et b = 8), a été calculée pour une durée correspondante à 5 heures, soit a priori avec une réduction de temps d’un facteur de l’ordre de 4 par rapport à la durée totale des deux situations (20 heures + 5 minutes).
On vérifie que le SDF de la spécification est très proche du SDF des deux vibrations (cf. figure 8.21). D’une manière qui peut surprendre, le SRE de la spécification de durée réduite est inférieur au SRE enveloppe des SRE du profil de vie (cf. figure 8.22).
La comparaison des SDF des deux vibrations étudiées montre que, bien que de durée beaucoup plus petite, le vol missile est beaucoup plus sévère que le transport par camion de durée 20 heures (cf. figure 8.23). Compte tenu des valeurs relatives des dommages, la somme des deux SDF est pratiquement confondue avec le SDF du vol missile. Etablir une spécification sur une durée de 5 heures revient donc à augmenter la durée de l’environnement réel largement dominé par le vol missile de 5 minutes à 5 heures, ce qui conduit à diminuer les contraintes et donc le SRE.

Si l’on établit une spécification avec une durée de 5 minutes, on peut vérifier que les SRE sont extrêmement proches (cf. figure 8.24).
Dans le cas très simple de cet exemple, ce résultat pouvait être prévu par comparaison des valeurs efficaces des vibrations. Dans le cas habituel de profils plus complexes, le problème peut souvent passer inaperçu sans cette analyse des SRE qui devrait toujours être effectuée.

8.11. Aide au choix des sanctions

<table>
<thead>
<tr>
<th>CRITERE</th>
<th>EXIGENCE</th>
<th>REPERE</th>
</tr>
</thead>
</table>
| ETAT APPARENT DU MATERIEL | Aucune modification ou dégradation de l’état du matériel n’est tolérée pour ce qui concerne :
 - L’aspect : géométrie des surfaces et des structures, peintures, états de surface, fixation des éléments, etc.
 - Les conditions de démontage, de remontage et d’accès aux éléments constitutifs,
 - Les connexions et les liaisons,
 - Le confort d’exploitation : souplesse des commandes, fonctionnement, lisibilité et protection des affichages, etc. | e1 |
| | Quelques modifications ou dégradations de l’état du matériel sont tolérées pour ce qui concerne :
 - L’aspect : quelques dégradations superficielles et limitées des peintures et états de surface avec des déformations limitées des géométries, des surfaces et des structures ne mettant pas en cause la solidité de l’ensemble,
 - Les ruptures, sans autres conséquences, des fixations des accessoires,
 - Les connexions et les liaisons,
 - L’accès aux éléments constitutifs, les démontages et remontages qui doivent rester possibles par les moyens normaux,
 - Le confort d’exploitation : légères altérations n’engendrant que des difficultés mineures. | e2 |
| | Certaines dégradations du matériel sont admises à condition que :
 - La solidité du matériel ne soit pas mise en cause,
 - L’accès aux éléments constitutifs, les démontages et les remontages restent possibles par les moyens normaux,
 - L’exploitation reste possible. | e3 |
Sécurité

- Pas de modification des paramètres déterminant la sécurité. (s1)
- La variation des paramètres déterminant la sécurité est admise dans les limites qui ne conduisent pas à l'apparition d'un risque de sinistre. (s2)

Fonctionnement Spécifique

- Fonctionnement spécifique normal. (f1)
- Fonctionnement spécifique perturbé permettant néanmoins l'exploitation du matériel dans les conditions du service courant. (f2)
- Fonctionnement spécifique très perturbé ne permettant pas l'exploitation, mais ne conduisant pas au déclenchement intempestif d'autres fonctions ou à la destruction du matériel. (f3)

Tableau 8-4: Aide au choix des sanctions

8.11.1. Code de sanction

Le code de sanction est formalisé par un chiffre de 0 à 3 :

- les chiffres de 1 à 3 regroupent un repère de chaque critère défini et sont explicités dans chaque fascicule d'essai,
- le chiffre 0 correspond à des critères différents. Ces critères sont donc à préciser dans le programme d'essais.

8.11.2. Conduite à tenir en cas d'incidents pendant les essais

Le demandeur d'essais doit préciser la conduite à tenir en cas d'incidents pendant les essais.

Ces incidents peuvent provenir soit du matériel en essai, soit du moyen d'essai. Il importe de les analyser pour les classer dans l'une ou l'autre catégorie :

- en cas d'incident dû au matériel en essai, la conduite à tenir est spécifique de ce matériel et n'est pas traitée dans le présent document,
- en cas d'incident dû au moyen d'essai, la conduite à tenir est détaillée ci-après (cf. fig. 8.31).

Le programme d'essais peut modifier cette conduite en fonction des impératifs propres au matériel en essai. En outre, une conduite à tenir particulière peut être indiquée dans le fascicule d'essai correspondant.

- le moyen d'essai est perturbé et délivre une sévérité hors tolérance par défaut : sauf indication particulière spécifiée dans le fascicule d'essai, l'essai doit être repris à partir du début constaté de l'état hors tolérance pour compléter la durée de l'essai prévue,
- le moyen d'essai s'arrête ou est perturbé et délivre une sévérité hors tolérance par excès : sauf indication particulière spécifiée dans le fascicule d'essai, il est préférable d'interrompre l'essai et de le reprendre dans sa totalité avec un nouvel exemplaire du matériel ; cela doit être fait en particulier s'il se pose un problème de sécurité ou de criticité.

Toutefois, si le matériel ne paraît pas endommagé ou si une réparation est admise, l'essai peut être repris et poursuivi. Mais en cas de défaillance du matériel en essai, l'essai n'est pas valable et doit être repris dans sa totalité avec un nouveau matériel.
Figure 8.25: Traitement des incidents dus au moyen d’essai
8.12. **Négliger ou non la composante statique**

Les accélérations statiques à prendre en compte sont comme :
- les facteurs de charge pour l’emport sous avion,
- les contraintes statiques emmagasinées dans les PCB,
- etc.

Cette prise en compte peut se faire en transformant l’amplitude de la vibration en une amplitude plus élevée intégrant la composante statique. Cette transformation se fait à l’aide du diagramme de Goodman ou des relations données dans le paragraphe 7 du rapport 3 de l’étude : Recherche de loi d’endommagement par fatigue utilisé.

L’appréciation de la pertinence de cette application est à faire au cas par cas. En tout cas, il est nécessaire de se poser la question dès qu’une accélération statique du même ordre de grandeur que l’accélération dynamique est appliquée à une fraction significative du temps.
9. EXEMPLE SUR PROFIL DE VIE SIMPLIFIÉ

Cet exemple présente une démarche complète sur un profil de vie simplifié. De ce fait, certaines tâches sortant du périmètre de la personnalisation tel que défini dans le § 1.2 sont aussi décrites. Ce choix a été effectué pour des raisons didactiques afin de montrer l’importance de toutes les actions à réaliser depuis la mesure de l’environnement réel et d’insister en particulier sur l’importance d’un examen approfondi des résultats de mesure avant leur utilisation. Cela permettra également d’aider au choix des outils d’analyse à utiliser dans la mise en œuvre de la personnalisation.

9.1. Données

Cet exemple basé sur un profil de vie simplifié est emprunté au domaine de l’armement terrestre et concerne particulièrement le transport logistique et tactique d’un canon automoteur. Les situations de transport logistiques sont identifiées sur le logigramme qui suit par les sigles S1, S2, S3 et S4. Pour ces Situations de Transport Logistique, le matériel objet de cette personnalisation est en configuration « arrimé par chaîne ou sangle sur porteur logistique ». Quant aux Situations de transport tactique, ces dernières sont identifiées par les sigles S5 et S6. Pour ces deux Situations de Transport Tactique, la configuration du matériel est de type tracté comme le montre la photo ci-dessous du canon automoteur TRF1.

![Figure 9.1: Synoptique du Profil d'emploi associé et Canon TRF1 de 155 tracté par un TRM 10000](image)

L’application des étapes 1 (Établissement du profil de vie environnement) et 2 (Caractérisation de l'environnement réel) de la démarche de personnalisation conduit à l'élaboration des tableaux de la Figure 9.2 et de la Figure 9.3.

Le tableau de la Figure 9.2 présente les différents événements associés à chaque situation du profil de vie simplifié qui sont dans le cas présent définis par des chocs et/ou des vibrations. Par ailleurs ce Tableau précise la configuration du matériel, associée à chacune des situations, ce qui permettra à l'étape 3 de la démarche de personnalisation, de bien organiser et de bien gérer la synthèse des environnements de plusieurs situations. Ainsi conformément aux considérations exposées précédemment, la synthèse du profil d'emploi simplifié conduira à deux essais et donc à deux sévérités d'essais, l'une associée aux situations logistiques et l'autre associée aux situations de transport tactique.

<table>
<thead>
<tr>
<th>Numéro de la situation</th>
<th>Type de situation</th>
<th>Événement de la situation</th>
<th>Configuration du Matériel</th>
<th>Occurrence</th>
<th>Durée (heures)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>S2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Canon TRF1 de 155 tracté par un TRM 10000
Figure 9.2: Caractérisation des situations d’environnement et des événements associés

Dans l'optique de réaliser, lors de l'étape 3 de la démarche de personnalisation, un calcul de coefficient de garantie sur les SRE, SRX, SDF et SRC de chaque environnement associé à une situation (ou à un événement si plusieurs événements sont inclus dans cette situation), le tableau de la Figure 9.3 présente deux types de coefficient de garantie : forfaitaire ou non, selon que l’on dispose d’une seule mesure ou de plusieurs mesures pour caractériser chaque évènement. Le coefficient de garantie que l'on se donne pour chaque évènement est, à ce stade de la caractérisation de la variabilité des environnements, défini en termes de niveau de contrainte (par opposition au cumul d’endommagement ou il aurait été défini en dommage par fatigue).

Figure 9.3: Caractérisation de l'environnement associé à chaque événement

Pour finir avec les données nécessaires au bon déroulement de la démarche de personnalisation, il ne reste plus qu'à présenter l’ensemble des paramètres de calcul qui sont consignés dans le tableau de la Figure 9.4. Ce tableau précise également les hypothèses de calcul retenues qui sont au nombre de deux et que l'on retient ici uniquement pour limiter le volume de travail à réaliser.

Figure 9.4: Caractérisation des situations d'environnement et des événements associés
SRX	Risque de dépassement accepté	$\alpha = 1\%$
Approche Coefficient de Garantie (CG) et Facteur d’essai (FE)

<table>
<thead>
<tr>
<th>Paramètres</th>
<th>Type de paramètre</th>
<th>Valeur retenue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notion de CVR</td>
<td>En réponses Extrêmes</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>En dommage par Fatigue</td>
<td>1</td>
</tr>
<tr>
<td>Contrainte/Résistance</td>
<td>Probabilité de défaillance acceptée</td>
<td>$P_0 = 1E 0.3$</td>
</tr>
<tr>
<td></td>
<td>Lois statistiques</td>
<td>Log-normales</td>
</tr>
<tr>
<td>Facteur d’essai</td>
<td>Niveau de confiance</td>
<td>$\Pi_0 = 90%$</td>
</tr>
<tr>
<td></td>
<td>Nombre de matériels testés</td>
<td>n = 1</td>
</tr>
</tbody>
</table>

Hypothèses retenues

- Hyp1 : Un seul axe du matériel est considéré (Axe longitudinal OX)
- Hyp 2 : Les Chocs seront traités en SRC uniquement et non en SDF

Figure 9.4 : Paramètres de calcul pris en compte pour l’élaboration des spécifications d’essai

Le point de mesure du matériel automoteur qui est ici pris en compte pour cette personnalisation suivant l’axe longitudinal du canon (OX) concerne particulièrement l’embase de l’artillerie de 155mm.

9.2. Caractérisation de la Situation de Transport Logistique par Voie Routière S1

Au niveau de la Situation S1, l’exemple traité permet de mettre en exergue les techniques de caractérisation de signaux qu’il est nécessaire de mettre en œuvre sur les environnements vibratoires mesurés (chocs, vibrations ou mixte), afin de pouvoir dérouler correctement le processus de personnalisation sur la base des techniques de calcul de SRE, SRX, SDF et SRC.

9.2.1. Cas de l’événement S1.1 : Choc de Manutention

L’événement S1.1 est ici caractérisé par un Choc de manutention sur le matériel automoteur, fourni sous forme temporelle. Ce choc correspond à la chute possible de l’automoteur, lors de sa mise en place sur la plateforme du Transporteur routier retenu pour réaliser la Situation S1.

Le Choc mesuré à l’embase de l’artillerie est échantillonné ($F_e = 4500\text{Hz}$), puis mis en base de donnée, avant de suivre le processus de traitement classique à quatre étapes suivant :

![Figure 9.5: Accélérogramme associé au Choc de Manutention](image)
9.2.2. Cas de l'événement S1.2 : Vibrations Mauvaise Route

L'événement S1.2 est ici caractérisé par une Vibration aléatoire non stationnaire mesurée sur l'embase de l'artillerie lors de son transport sur mauvaise route, arrimé sur son porteur. La vibration aléatoire est sous forme temporelle et présente la particularité d'être superposé à des phénomènes de chocs importants, qu'il convient de pouvoir extraire des vibrations à l'aide de techniques de traitement du signal adaptées. Le signal temporel associé à cet événement est présenté ci après, à savoir :
Cette vibration Mauvaise Route MR (t) mesurée à l'embase de l'artillerie est échantillonnée (Fe = 2000Hz), puis mis en base de donnée, avant de suivre un premier processus de traitement à cinq étapes consistant à extraire les chocs des vibrations pour les analyser en termes de SRC. Ce processus d'extraction de chocs est défini par la Figure 9.9 suivante :
Figure 9.9: Processus d'extraction des Chocs du signal de vibration Mauvaise Route

L'analyse des moments statistiques, en termes d'asymétrie et d'aplatissement permet d'identifier la présence de trois chocs dans le signal de vibration Mauvaise Route. Ces derniers sont alors extraits et traités en SRC en utilisant la démarche du coefficient de garantie. On obtient donc la Figure 9.10 suivante:
Le signal de vibration restant (Sans Choc), dénommé MR_SC (t), fait ensuite l'objet d'un deuxième processus de traitement, centré sur l'étude des vibrations non stationnaires, qui est présenté à la Figure 9.11 qui suit.

Comme le montre le processus de traitement de la Figure 9.11 précédent, il est possible d'utiliser différentes méthodes de calculs sur ce type de signal non stationnaire. La première méthode envisagée consiste à utiliser l'approche déterministe avec comme inconvénient majeur de calculer les SRE et SRX associés que sur une durée de l'ordre de 80 secondes alors que l'événement S1.2 est à prendre en compte sur une durée de 10 heures. De ce fait cette approche déterministe est écartée au profit des méthodes spectrales. Cependant étant donnée, le caractère non stationnaire de la vibration à traiter, une méthode spectrale classique basée sur le calcul de la DSP moyennée sur toute la durée du signal n'est pas satisfaisante car trop minorante. De ces considérations techniques, il ressort que la méthode spectrale à retenir doit être une
une méthode capable d’analyser la non stationnarité du signal en s'appuyant sur l'histogramme de l'état variant la caractérisant [COL 94]. Dans le cas présent, l'état variant à prendre en compte est représenté par la valeur efficace de l'accélération temporelle du signal. Il est à noter que l'accélération efficace n'est pas toujours l'état variant pertinent à retenir pour traiter le cas des environnements non stationnaires des porteurs terrestres en Situation de roulement opérationnelle. Dans certains cas, il est préférable de retenir la vitesse du porteur, c'est le cas notamment des véhicules chenillés dont la nature stationnaire se traduit par une évolution de la valeur efficace, mais également de son allure spectrale [COL 91].

Ainsi la méthode de traitement retenue pour traiter le cas de cette vibration non stationnaire est une méthode spectrale, basée sur le calcul de l'histogramme de la valeur efficace du signal. La largeur des classes est alors réglée de manière à assurer une précision statistique de 10% sur les amplitudes des DSP, associées aux différentes classes calculées. On obtient donc un histogramme d'état variant défini par cinq classes que l'on présente sur la Figure 9.12 suivante.

![Figure 9.12: Histogramme de l'état variant caractérisant la non stationnarité des vibrations](image)

Chacune de ces cinq classes est ensuite caractérisée par sa DSP d'accélération dans la bande de fréquence [0, 800Hz] comme le montre le Diagramme de chute d'eau de la Figure 9.13 suivant. Chaque DSP est calculée avec une précision statistique de 10%, pour une résolution fréquentielle de 6,29Hz, permettant d'assurer la stationnarité des signaux pour les 5 classes réalisées.

![Figure 9.13: Diagramme de chute d'eau des DSP d'accélération par classe](image)
A ce diagramme de chute d'eau des DSP d'accélération par classe, on associe le diagramme 2D de la Figure 9.14, permettant de caractériser chaque DSP en termes de valeurs efficaces sur la bande d'analyse [0, 800Hz]. On a donc :

![Diagramme 2D de la Figure 9.14: Accélération efficace associée à chaque DSP](image1)

Chaque classe étant désormais caractérisée par sa DSP d'accélération et sa durée d'excitation, il est possible de calculer pour chacune d'elle ses SRE, SRX et SDF associés. Ceci est fait en prenant en compte l'approche du coefficient de garantie forfaitaire de 1,3 comme défini dans le Tableau de la Figure 9.3.

Pour le SRE et le SRX, on obtient alors les diagrammes de chute d'eau présentés respectivement à la Figure 9.15 et à la Figure 9.16.

![Diagramme 3D de chute d'eau des SRE par classe](image2)

Sur ce diagramme 3D, le dernier spectre (VMR_SH_k) correspond à la synthèse des SRE des 5 classes, qui est ici représenté par l'enveloppe des SRE, associés aux 5 classes retenues.
De même que précédemment, sur ce diagramme 3D, le dernier spectre (VMR_SH_k) correspond à la synthèse des SRX des 5 classes, qui est ici représenté par l'enveloppe des SRX, associés aux 5 classes retenues.

De façon plus précise, l'analyse non stationnaire en termes de SRE et de SRX de cette vibration Mauvaise Route, associée à une durée de 10 heures et à un coefficient de garantie forfaitaire de 1,3 peut être caractérisé par la Figure 9.17 suivante, à savoir :

![Diagramme de chute d'eau des SRX par classe](image)

Figure 9.16: Diagramme de chute d'eau des SRX par classe

Pour le SDF, on obtient alors le diagramme de chute d'eau présenté à la Figure 9.18 qui suit. A savoir:

![Diagramme de SRX des vibrations Mauvaise Route](image)

Figure 9.17: SRE et SRX des Vibrations Mauvaise Route

Pour le SDF, on obtient alors le diagramme de chute d'eau présenté à la Figure 9.18 qui suit. A savoir:
Figure 9.18: Diagramme de chute d'eau des SDF par classe

Sur ce diagramme 3D, le dernier spectre (VMR_SH_k) correspond à la synthèse des SDF des 5 classes, qui est ici représenté par la sommation des SDF, associés aux 5 classes retenues. Et de façon plus précise, l’analyse non stationnaire en terme de SDF de cette vibration Mauvaise Route, associée à une durée de 10 heures et à un coefficient de garantie forfaitaire de 1,3 peut être caractérisé par la Figure 9.19 suivante, à savoir :

Figure 9.19: SDF des Vibrations Mauvaise Route

9.2.3. Cas de l'événement S1.3 : Vibrations Bonne Route

L'événement S1.3 est ici caractérisé par une Vibration aléatoire stationnaire mesuré sur l'embase de l'artillerie lors de son transport sur bonne route, arrimé sur son porteur. La vibration aléatoire est définie sous forme spectrale par un échantillon de six DSP d'accélération, ce qui permet de pouvoir évaluer la variabilité de l'environnement en termes de moyenne et d'écart type et donc de coefficient de variation. Des considérations techniques précédentes, il ressort donc que le coefficient de garantie peut être calculé en s'appuyant sur une démarche statistique, prenant en compte des lois de type log-normale comme définie au Tableau de la Figure 9.4. Les DSP d'accélérations associées à cet événement sont présentées sur le diagramme de chute d'eau ci après, à savoir :
Les six DSP sont associées à bande de fréquences [1, 1000Hz] et à une erreur statistique de 10%. Les valeurs efficaces d'accélération sont fournies par le diagramme de la Figure 9.21 qui suit. Et on a donc :

On constate que la dispersion en valeur efficace et en allure spectrale est tout à fait acceptable pour mener l'approche du coefficient de garantie, même si le nombre de données spectrales (six) reste une valeur relativement faible pour les calculs statistiques à réaliser. Le processus de traitement statistique se fait sur le calcul des SRE, SRX et SDF comme le montre la Figure 9.22 qui suit.
Figure 9.22: Processus de traitement des Vibrations Bonne Route

En termes de SDF, les six SDF des six DSP sont calculés par les techniques spectrales puis analysés sous l'angle statistique en terme de Coefficient de Variation. Les SDF sont présentés dans le diagramme de chute d'eau de la Figure 9.23 qui suit.
Pour affecter ensuite ces SDF par un coefficient de garantie estimé par calculs statistiques, il convient tout d'abord de calculer le Coefficient de Variation (CVE) de ces SDF qui est présenté à la Figure 9.24 qui suit.

Dans la continuité, l'approche contrainte – résistance est réalisée et conduit au résultat du coefficient de garantie k_{1_SDF} présenté à la Figure 9.25, en s'appuyant pour ce faire sur les données du Tableau de la Figure 9.4 au niveau de la résistance du matériel.

Ainsi en utilisant l'interaction de deux lois log-normales, on obtient le Coefficient de Garantie suivant :

Avec

Avec

Ayant désormais calculé le Coefficient de Garantie des SDF des Vibrations Bonne Route, il convient de l'appliquer sur la valeur moyenne des SDF, ce qui conduit au résultat de la Figure 9.26.
En termes de SRE et de SRX, on utilise la même approche que précédemment pour le calcul des Coefficients de Variation de l’environnement et de Garantie. Les diagrammes de Chute d'eau associés aux SRE et SRX sont présentés respectivement aux Figures 9.27 et 9.28.

On a donc :

Figure 9.26: SDF des Vibrations Bonne Route, affecté de son Coefficient de Garantie

Figure 9.27: SRE des Vibrations Bonne Route
En termes de Coefficient de Variation et de Coefficient de Garantie, on peut montrer que ces derniers sont identiques, que l'on s'intéresse aux SRE ou aux SRX des Vibrations Bonne Route. Ces coefficients sont présentés respectivement dans les courbes des Figures 9.29 et 9.30 qui suivent.

On remarque, comme d'ailleurs pour les SDF, que le Coefficient de Variation des SRE et SRX est important à basse fréquence et plus faible à haute fréquence. Il est à noter que le CVE des SDF dépasse l'unité pour les fréquences inférieures à 200Hz.
Ayant désormais calculé le Coefficient de Garantie des SRE et SRX des Vibrations Bonne Route, il convient de l’appliquer sur les valeurs moyennes des SRE et SRX, ce qui conduit aux résultats des Figures 9.31 et 9.32.
9.2.4. Synthèse des événements S1.1, S1.2 et S1.3

A ce stade, il convient de faire un rappel des SRE, SRX, SDF et SRC calculés pour l’ensemble des ces trois événements, avant de procéder à la Synthèse de ces événements. Pour ce faire, on présente le synoptique qui suit permettant de rappeler les différentes opérations réalisées précédemment au niveau de chaque événement. On a donc :

Figure 9.33: Processus de caractérisation en SRE, SDF, SRC et SRX de la Situation S1
La Situation de Transport Logistique S1 est caractérisée par trois événements qui s'appliquent tous trois sur le matériel pendant toute la Situation de transport. De ce fait, ces trois événements sont assimilables à trois sous-situations en série.

Le synoptique précédent reprend pour chaque événement considéré la démarche de calculs exposée dans les paragraphes précédents. Il est à noter que la Synthèse de S1.2 ne fait apparaître qu'un SRC. La synthèse associée à S1.2 fait quant à elle apparaître un SRE, SRX, SDF et SRC. Et pour finir la synthèse associée à S1.3 fait apparaître un SRE, SRX et SDF, mais pas de SRC.

Des considérations précédentes, le processus de synthèse des trois événements considérés est établi selon la démarche classique de Sommation des SDF et d'Enveloppe des SRE et SRX., qui est exposé en détail sur la Figure 9.34 qui suit. On a donc :

Les résultats de cette synthèse en termes de SRE, SRX, SDF et de SRC sont exposés respectivement dans les Figures 9.35 à 9.38.
Figure 9.35: SRE de la Situation de Transport Logistique S1

Figure 9.36: SRX de la Situation de Transport Logistique S1
Figure 9.37: SDF de la Situation de Transport Logistique S1

Figure 9.38: SRC de la Situation de Transport Logistique S1
En comparant les SRE, SRX et SRC associés à la Situation S1, on voit très clairement que la problématique Chocs se situe bien au-dessus de celle des vibrations en termes de contraintes extrêmes, comme le montre la Figure qui suit.

Figure 9.39: Comparaison des SRE, SRX et SRC de la Situation S1
9.3. **Caractérisation de la Situation de Transport Logistique par Voie Routière S2**

Le processus de Traitement de la Situation S2 est tout à fait similaire à celui réalisé pour l’événement S1.2. On reconduit donc ce même processus sur la base de quatre DSP et non plus de six pour caractériser S2.

![Figure 9.40: Allure spectrale des quatre DSP de roulage sur Bonne Route](image)

![Figure 9.41: Accélération efficace associée à chaque DSP](image)
La synthèse associée à la Situation de Transport Logistique S2, en termes de SRE, SRX, SDF et SRC est donc décrite par le synoptique défini ci-après. Et on a :

Figure 9.42: Processus de synthèse associé à la Situation S2

Les résultats de cette synthèse en termes de SRE, SRX et SDF sont exposés respectivement dans les Figures 9.43 et 9.44 suivantes.

Figure 9.43: SRE et SRX de la Situation S2

Ces SRE et SRX sont ici affectés de leur coefficient de garantie, obtenu par la démarche statistique exposée dans le détail à la Situation S1, lors du traitement de l’événement S1.2. En ce qui concerne le SDF de la Situation S2, une procédure comparable est réalisée et on obtient alors le spectre de la Figure qui suit.

Figure 9.44: SDF de la Situation S2
9.4. Caractérisation de la Situation de Transport Logistique par Voie Aérienne S3

La Situation de Transport Logistique par voie aérienne S3 s’effectue sur un C160 Transall (voir photo ci-dessous) possédant deux moteurs Rolls-Royce Tyne 22 de part et d’autre du fuselage. La puissance unitaire d’un moteur est d’environ 6000CV et le matériel est arrimé au porteur en soute.

Le C160 est un avion à hélices et de ce fait des phénomènes périodiques reliés à la rotation des moteurs se superposent au bruit large bande des vibrations aléatoires produit par l’avion sur le matériel arrimé (canon automoteur). De ce fait la nature des vibrations générées par ce type de porteur est de type composite Sinus plus Bruit et doit donc être caractérisée comme telle. Ce type de problématique se retrouve à l’identique sur les matériels installés sur hélicoptères et de façon plus critique sur les matériels installés sur les porteurs chenillés [COL 90a], dans la mesures où les fréquences sinusoidales d’engrenage sont
généralement variables et non fixes comme dans le cas des deux porteurs aériens (avions à hélices et hélicoptères).

La caractérisation de cet environnement composite passe par une dissociation du bruit large bande et des composantes périodiques dues aux excitations produites par les pales des hélices moteurs. Avec les méthodes conventionnelles de traitement du signal (analyse de Fourier), il n'est pas possible de réaliser cette séparation avec une bonne précision en amplitude et phase, même dans le cas où la situation est très stationnaire. Pour réaliser cette séparation et ainsi mieux caractériser l'environnement composite du porteur en termes de SRE et de SDF, des techniques de filtrage de Kalmann ou d'analyse synchrone sont nécessaires [COL 91 et COL 94].

Néanmoins si ces techniques de séparation de signaux composites sont de nature à mieux caractériser les Spectres d'endommagement de ce type d'environnement, il n'en demeure pas moins vraie qu'elle nécessite d'utiliser en plus de la mesure accélérométrique une mesure des états variants caractérisant la cinématique des machines tournantes du porteur à l'origine des phénomènes périodiques.

Dans le cas présent la vitesse de rotation des hélices moteurs du C160 n'ayant pas été instrumenté, il n'est pas possible de mettre en œuvre ces techniques d'extraction et donc de caractérisation en SRE et SDF par une approche spectrale adaptée à la nature composite de l'environnement [COL 92b] et [COL 90b].

De ces considérations techniques, les méthodes envisageables pour caractériser en SRE et SDF cette Situation de Transport par voie aérienne sont de deux types, comme présenté par le synoptique qui suit. La méthode déterministe sera favorisée au détriment de la méthode spectrale, basée sur le calcul des DSP dans la mesure où ce modèle spectrale n'est pas adapté à la nature composite de l'environnement [COL 92a].

Le processus de traitement associé à la Situation S3 est présenté à la Figure 9.46 qui suit et on a donc :

![Figure 9.46: Processus de traitement de la Situation S3 (Avion C160)]
Le signal temporel associé à la Situation S3 est défini sur une durée limitée de 10 secondes comme présenté ci-après. Ce dernier est ensuite échantillonné à 5 KHz et a pour valeur efficace 0,65 m/s² à l'embase de l'artillerie.

Figure 9.47: Vibrations en Vol sur C160

Afin d'illustrer les propos présentés dans le corps du texte sur les risques générés par le modèle DSP pour caractériser cette Situation d'environnement composite Sinus plus Bruit, le signal temporel de la Figure 9.47 a fait l'objet d'un traitement DSP pour différentes résolutions fréquentielles. Les DSP obtenues sont alors très comparables en termes d'allure et de niveau sauf au voisinage de la fondamentale de rotation de pales (H1 : 58,6 Hz) et de sa troisième harmonique (H3 : 175,8Hz).

Figure 9.48: DSP des Vibrations en Vol sur C160
Plus précisément au niveau du H1 et de son H3, on a :

![Figure 9.49: DSP au voisinage de H1 (à gauche) et DSP au voisinage de H3 (à droite)](image)

Figure 9.49: DSP au voisinage de H1 (à gauche) et DSP au voisinage de H3 (à droite)

On constate logiquement que plus la résolution fréquentielle de la DSP est faible et plus le niveau de DSP est important. L’impact en terme de SDF, localisé sur le H1 est alors présenté dans la Figure 9.50 suivante.

![Figure 9.50: Impact de la résolution fréquentielle de la DSP sur le calcul du SDF](image)

Figure 9.50: Impact de la résolution fréquentielle de la DSP sur le calcul du SDF

Des considérations précédentes, il ressort que la méthode la mieux adaptée pour caractériser en SRE, SRX et SDF la Situation S3, faute de disposer d’une référence de phase sur la rotation des pales moteurs, est la méthode déterministe. On a donc les résultats suivants :
Figure 9.51: SRE et SRX des vibrations en vol (C160)

Figure 9.52: SDF des vibrations en vol (C160)
9.5. **Caractérisation de la Situation de Transport Logistique par Voie Ferrée S4**

La Situation de Transport Logistique par voie ferrée S4 consiste à arrimer le matériel (canon automoteur) sur une plateforme ferroviaire évoluant à vitesse constante sur bonne voie. De ce fait, cette situation sera donc caractérisée par des vibrations aléatoires stationnaires. Elle est enrichie par une problématique de chocs de type passage à niveau qui est ici caractérisé par son SRC.

Le processus de traitement associé à la problématique chocs est le suivant :

![Diagramme des étapes de traitement du choc de passage à niveau](image)

Figure 9.53: Processus de Traitement du Choc de passage à niveau

Et la prise en compte du coefficient de garantie conduit au résultat suivant :

![Graphique SRC du choc de passage à niveau](image)

Figure 9.54: SRC du choc de passage à niveau

En ce qui concerne les vibrations bonne voie le processus de traitement est le suivant et est basé essentiellement sur une démarche spectrale de type DSP.
La DSP des vibrations bonne voie est associée à une erreur statistique de 10% et à une valeur efficace de 0,31 m/s\(^2\) pour une Bande passante [0, 2000Hz]. Cette dernière est présentée ci-dessous :
Les SRE, SRX et SDF associés à cette vibration Bonne voie sont présentées dans les figures qui suivent, à savoir :

Figure 9.57: SRE et SRX des vibrations Bonne voie

Figure 9.58: SDF des vibrations Bonne voie

A ce stade, il est possible de comparer le SRC du Passage à niveau par rapport aux SRE et SRX des Vibrations Bonne Route, ce qui conduit au graphe de comparaison suivant.
Figure 9.59: Comparaison des SRE, SRX et SRC associés à la Situation S4
9.6. Caractérisation de la Situation de Transport Tactique sur Tout Chemin S5

La Situation de Transport Tactique sur Tout Chemin S5 consiste à tracter le matériel (canon automoteur) par un TRM 10000, évoluant en Tout Chemin. Les vibrations sur le canon automoteur rentrent donc par le timon du matériel et ses deux roues. Les vibrations récupérées au niveau de l'embase de l'artillerie sont échantillonnées et traitées en DSP. Cette dernière est présentée à la Figure 9.60 qui suit.

![Figure 9.60: DSP des vibrations Tout Chemin](image)

Le processus de traitement pour caractériser S5 est donc le suivant. Il s'appuie sur une démarche spectrale classique, sachant que les vibrations mesurées s'éloignent peu du modèle Gaussien, qui constitue une des hypothèses restrictives de la démarche spectrale.

![Figure 9.61 : Processus de traitement des vibrations Tout Chemin](image)

Les SRE, SRX et SDF associés à cette vibration Tout Chemin sont présentées dans les figures qui suivent et sont associés à un facteur de garantie forfaitaire de 1,3 comme mentionné au Tableau de la Figure 9.4. On a donc les graphes suivants :
Figure 9.62: SRE et SRX des vibrations Tout Chemin

Figure 9.63: SDF des vibrations Tout Chemin
9.7. Caractérisation de la Situation de Transport Tactique sur Tout Terrain S6

La Situation de Transport Tactique sur Tout Terrain S6 consiste à tracter le matériel (canon automoteur) par un TRM 10000, évoluant en Tout Terrain. Les vibrations sur le canon automoteur rentrent donc par le timon et les deux roues du matériel. Les vibrations récupérées au niveau de l'embase de l'artillerie sont échantillonnées et traitées en DSP. Cette dernière est présentée à la Figure 9.64 qui suit.

![Figure 9.64: DSP des vibrations Tout Terrain](image)

Le processus de traitement pour caractériser S6 est comparable à celui réalisé pour S5 et conduit à la synthèse suivante, à savoir :

![Figure 9.65: Processus de synthèse associé à la Situation S6](image)

Les SRE, SRX et SDF associés à cette vibration Tout Terrain sont présentées dans les figures qui suivent et sont associés à un facteur de garantie forfaitaire de 1,3 comme mentionné au Tableau de la Figure 9.4. On a donc les graphes suivants :
Figure 9.66: SRE et SRX de la Situation de Transport Tactique S6

Figure 9.67: SDF de la Situation de Transport Tactique S6
9.8. **Synthèse des deux Situations de Transport Tactique S5 et S6**

Conformément à ce qui a été dit précédemment, il convient de réaliser une synthèse des Situations de Transport Logistique (S1, S2, S3 et S4) puis une synthèse des Situations de Transport Tactique (S5 et S6) sachant que la configuration du matériel est très différente dans un cas et dans l'autre.

Dans le cas présent, on se propose de réaliser la synthèse des deux Situations S5 et S6 qui sont deux Situations en Série. On a donc le Synoptique de synthèse suivant :

![Synthèse des situations S5 et S6](image)

Figure 9.68 : Processus de synthèse associé aux Situations S5 et S6

Comme les deux situations S5 et S6 sont en Série, la synthèse revient à faire pour le SRE de synthèse S5/S6 l'enveloppe des SRE des deux situations S5 et S6. Le principe de synthèse retenu pour le SRX est équivalent au cas du SRE. Et pour le SDF de synthèse S5/S6, la synthèse revient à faire la sommation des SDF des deux situations S5 et S6. A ce stade, il n'y pas de Synthèse de SRC pour les situations de Transport Tactique S5 et S6, dans la mesure où ces deux situations sont caractérisées uniquement par des vibrations.
En ce qui concerne la synthèse des SRE et des SRX, cette dernière est présentée respectivement dans les Figures 9.69 et 9.70. Et on a donc :

Figure 9.69: SRE de la Synthèse des Situations S5 et S6

Figure 9.70 : SRX de la Synthèse des Situations S5 et S6
D'où la synthèse en SRE et SRX suivante pour les deux Situations S5 et S6.

![Figure 9.71 : Synthèse en SRE et SRX des Situations S5 et S6](image)

En ce qui concerne la synthèse des SDF, cette dernière est présentée à la Figure 9.72. Et on a donc :

![Figure 9.72: SDF de la Synthèse des Situations S5 et S6](image)
9.9. Synthèse des quatre Situations de Transport Logistique S1, S2, S3 et S4

On va ici procéder par étape et réaliser tout d'abord la synthèse des deux Situation S3 et S4 pour ensuite réaliser l'ensemble de la synthèse des quatre situations de Transport logistique concernées.

9.9.1. Synthèse des deux Situations de Transport Logistique S3 et S4

Avant de procéder à la synthèse globale de l’ensemble des Situations de Transport Logistique (S1, S2, S3 et S4), il convient de réaliser une synthèse intermédiaire concernant les Situations S3 et S4 qui sont située en série.

Le synoptique qui suit présente l’ensemble des spectres à synthétiser pour ces deux Situations de Transport Logistique S3 et S4. On a donc :

\[\text{Caractérisation} \rightarrow \text{SRE, SRX, SDF, SRC} \rightarrow \text{Approche CG} \rightarrow \text{Synthèse}\]

\[\begin{align*}
\text{Vibration Stationnaire de type Composite Sius plus Bruit (Approche Déterministe)} & \\
1 \text{Temporel} & \rightarrow 1 \text{SRE} & \rightarrow k \text{SRE} & \rightarrow \text{SRE[S3]} \\
1 \text{Temporel} & \rightarrow 1 \text{SRX} & \rightarrow k \text{SRX} & \rightarrow \text{SRX[S3] puis SRX[S4]} \\
1 \text{Temporel} & \rightarrow 1 \text{SDF} & \rightarrow k \text{SDF} & \rightarrow \text{SDF[S3]} \\
1 \text{Temporel} & \rightarrow 1 \text{DSP} & \rightarrow k \text{DSP} & \rightarrow \text{DSP[S3]}
\end{align*}\]

\[\text{Vibration Stationnaire supposée de nature Gauusienne} \rightarrow 1 \text{DSP}\]

\[\begin{align*}
1 \text{DSP} & \rightarrow 1 \text{SRE} & \rightarrow k \text{SRE} & \rightarrow \text{SRE[S4, 2] = SRE[S4]} \\
1 \text{DSP} & \rightarrow 1 \text{SRX} & \rightarrow k \text{SRX} & \rightarrow \text{SRX[S4, 2] = SRX[S4]} \\
1 \text{DSP} & \rightarrow 1 \text{SDF} & \rightarrow k \text{SDF} & \rightarrow \text{SDF[S4, 2] = SDF[S4]}
\end{align*}\]

Figure 9.73: Processus de synthèse intermédiaire associé aux Situations S3 et S4

On constate ici qu'il conviendra de réaliser une synthèse au sens des quatre spectres SRE, SRX, SDF et SRC.

Le principe de synthèse retenu est comparable à celui qui a été mené précédemment au niveau des Situations de Transport Tactique S5 et S6, à savoir :

- pour le SRE[S3/S4], enveloppe des SRE de S3 et de S4,
- pour le SRX[S3/S4], enveloppe des SRX de S3 et de S4,
- pour le SDF[S3/S4], sommation des SRE de S3 et de S4,
- pour le SRC[S3/S4], enveloppe des SRC de S3 et de S4,
D'où le synoptique de synthèse suivant :

En ce qui concerne la synthèse des SRE et des SRX, cette dernière est présentée respectivement dans les Figures 9.75 et 9.76. Et on a donc :

![Figure 9.75: SRE de la Synthèse des Situations S3 et S4](image)

Figure 9.75: SRE de la Synthèse des Situations S3 et S4
D'où la synthèse en SRE et SRX suivante pour les deux Situations S5 et S6.
En ce qui concerne la synthèse en SDF, cette dernière est présentée à la Figure 9.78. Et on a donc :

Figure 9.78: SDF de la Synthèse des Situations S3 et S4

Au niveau de la problématique chocs, la Synthèse des SRC conduit à ne considérer que le SRC de la Situation S4 puisque la Situation S3 n’est pas caractérisée par des événements chocs. La comparaison des synthèses en SRE, SRX et SRC conduit alors à la figure 9.79 suivante.

Figure 9.79: Comparaison entre le SRC de Synthèse et le SRX de Synthèse des Situations S3 et S4

On constate que le choc de type passage à niveau est ici couvert par le SRX des vibrations des Situations S3 et S4 sur la bande de fréquence inférieure à 400Hz. Au delà, l'effet du choc est très dimensionnant, ce qui préfigure une spécification de Choc au niveau du Transport Logistique à réaliser en plus de la Spécification vibratoire qui sera définie ultérieurement.
9.9.2. Synthèse des trois Situations de Transport Logistique S1, S2 et S3/S4

Ayant réalisé précédemment la Synthèse des Situations de Transport Logistique S3 et S4, il nous reste donc plus qu’à réaliser la Synthèse des Situations S1, S2 et S3/S4. Le synoptique de cette synthèse est présenté ci-après :

Cette synthèse est réalisée en sachant que la Situation S3/S4 est en parallèle avec la Situation S2, et que ces deux Situations sont en série avec la Situation S1. De ce fait, la seule subtilité se situe au niveau de la synthèse des SDF qui conduit à retenir dans un premier temps l’enveloppe de SDF[S3/S4] et de SDF[S2], puis de faire la sommation de SDF[S2/S3/S4] avec SDF[S1].

Les synthèses des SRE, des SRX et des SRC sont réalisées en utilisant l'approche enveloppe qui s’applique aussi bien dans le cas de Situation en série qu’en parallèle.

Les synthèses en SRE et SRX sont représentées respectivement dans les Figures 9.81 et 9.82. On a donc :
En ce qui concerne la synthèse en SDF, cette dernière est présentée à la Figure 9.83. Et on a donc :

Figure 9.83: SDF de la Synthèse des Situations S1, S2, S3 et S4
Au niveau de la problématique chocs, la Synthèse des SRC conduit à faire l'enveloppe des SRC[S1] et SRC[S3/S4] comme présenté sur le synoptique précédent. La comparaison des synthèses en SRE, SRX et SRC conduit alors à la figure 9.84 suivante.

![Figure 9.84 : Comparaison entre le SRC de Synthèse et le SRX de Synthèse des Situations S1, S2, S3 et S4](image)

A ce stade, on constate que le SRC de la Synthèse couvre très largement, sur toute la bande de fréquence considérée [5Hz, 2000Hz], le SRX de la Synthèse. De ce fait, un essai de Choc sera à spécifier en plus d'un essai de vibration à durée réduite qu'il reste à spécifier.
9.10. Spécifications d'essais associée au canon automoteur soumis au profil d'emploi simplifié

Comme discuté lors de l'établissement du profil d'emploi simplifié la configuration du matériel étant différente entre les Situations Logistiques (S1, S2, S3 et S4) et les Situations Tactiques (S5 et S6), il convient de réaliser deux spécifications d'essais différentes.

La première sera réalisée pour les Situations Tactiques S5 et S6 pour lesquelles le matériel est "tracté" par son timon. Et la deuxième sera réalisée pour les Situations Logistiques S1, S2, S3 et S4 pour lesquelles le matériel est "arrimé" par sangles ou chaînes.

9.10.1. Spécification d'essais associée aux Situations de Transport Tactique S5 et S6

Conformément aux résultats de la Synthèse des Situations S5 et S6 exposée au §2.8 précédent, la spécification d'essais à réaliser ici n'est que de nature vibratoire, puisque cette dernière ne fait pas apparaître de synthèse en terme de SRC. Le synoptique associée à cette spécification vibratoire est donc le suivant :

Figure 9.85 : Processus d’élaboration de la Spécification vibratoire associée aux Situations de Transport Tactique S5 et S6

A ce stade, il convient tout d'abord de calculer les Facteurs d'Essai (FE) associés aux SRE, SRX et SDF pour pouvoir évaluer les Spectres de Référence sur lesquels est basée l'élaboration de la Spécification d'essai vibratoire.
Pour les SRE et SRX, le calcul du Facteur d'Essai (FE) s'effectue en s'appuyant, pour la résistance du matériel (CVR) et le nombre de matériel à testé (n), sur les valeurs du Tableau de la Figure 9.4 et on a donc les résultats suivants :

| Cas d’un matériel dont la Résistance (SRE et SRX) est définie par une loi Log-Normale |
|----------------------------------|----------|
| **Données d’entrée** | |
| Nombre de matériels à tester (n) | 1 |
| Niveau de confiance désiré (Po) | 0,9 |
| Coefficient de variation de la loi (CVR) | 0,08 |
| **Donnée de sortie** | |
| Facteur d’essai (FE) | 1,14 |

On constate donc que le fait de faire un essai sur un seul exemplaire du matériel (automoteur) conduit à relever les SRE et les SRX de la Synthèse des Situations de Transport Tactique que de 14%, qui somme toute est une valeur assez faible devant l'approche coefficient de garantie.

On fait de même pour le Facteur d'Essai en terme de SDF et on obtient :

| Cas d’un matériel dont la Résistance (SDF) est définie par une loi Log-Normale |
|----------------------------------|----------|
| **Données d’entrée** | |
| Nombre de matériels à tester (n) | 1 |
| Niveau de confiance désiré (Po) | 0,9 |
| Coefficient de variation de la loi (CVR) | 1 |
| **Donnée de sortie** | |
| Facteur d’essai (FE) | 3,93 |

Ce facteur d'essai ramené en terme de contrainte conduit à une majoration de 19%, qui constitue une valeur faible devant la valeur du coefficient de garantie.
Les Spectres de Référence en termes de SRE et de SRX sont présentés respectivement dans les Figures 9.86 et 9.87 suivantes :

Figure 9.86: SRE de Référence associé à la Synthèse des Situations S5 et S6

![Figure 9.86: SRE de Référence associé à la Synthèse des Situations S5 et S6](image)

Figure 9.87: SRX de Référence associé à la Synthèse des Situations S5 et S6

![Figure 9.87: SRX de Référence associé à la Synthèse des Situations S5 et S6](image)
Le Spectre de Référence en terme de SDF est présenté à la Figure 9.88 suivante :

![Figure 9.88: SDF de Référence associé à la Synthèse des Situations S5 et S6](image)

Connaissant les valeurs des spectres de Référence, il est désormais possible d'estimer la DSP d'essai que l'on va noter DSP_TT(f) et que l'on va définir sur la bande de fréquences [5Hz, 2000Hz] pour une durée d'essai de 2 heures. Cette DSP d'essai est estimée par un "Retour inverse" qui correspond dans le cas présent à une approche d'équivalence d'endommagement par fatigue. En effet, on calcule les niveaux de la DSP d'essai [DSP_TT(f)] de manière à ce que son SDF soit égal au SDF de Référence, associé à la synthèse des Situations S5 et S6.

Le choix de la durée d'essai de 2 heures est ici bien sûr non conditionnée par les valeurs du SRC de la synthèse puisque les Situations S5 et S6 sont caractérisées que par des vibrations (pas de présence de chocs pour ces dernières). Par conséquent le choix de la durée d'essai de 2 heures est réalisé de manière à limiter le coefficient d'exagération Eg de l'essai que l'on évalue comme étant le rapport entre le SRX de l'essai et le SRX de la synthèse. Dans le cas présent, on se fixe un coefficient d'exagération Eg à ne pas dépasser de 1,4. De ce fait, le choix de la durée d'essai s'effectue par un processus itératif basée sur les SRX de Référence et de Spécification et non sur les SRC.
La DSP d'essai DSP_TT(f) estimée à endommagement constant sur une durée de 2 heures est définie sur la bande de fréquences [5Hz, 2000Hz] et à pour valeurs efficaces :

\[
\begin{align*}
\text{Accélération efficace} & = 8,33 \text{ m/s}^2 \\
\text{Vitesse efficace} & = 25,78 \text{ mm/s} \\
\text{Déplacement efficace} & = 0,263 \text{ mm}
\end{align*}
\]

Son allure spectrale est présentée à la Figure 9.89 suivante :

Figure 9.89: DSP d'essai associée à la synthèse des Situations de Transport Tactique S5 et S6

La pertinence de cette Spécification d'essai est démontrée en positionnant la DSP d'essai DSP_TT(f) par rapport aux DSP des Situations S5 et S6 qui sont respectivement nommées DSP_VTC(f) et DSP_VTT(f). On obtient alors la Figure 9.90 suivante.
Figure 9.90: Comparaison de la DSP d'essai avec les DSP des Situations S5 et S6, objets de la Synthèse

A ce stade, on constate que la DSP d'essai enveloppe de façon très optimale tous les pics présents sur les deux DSP des Situations S5 et S6, objets de cette synthèse. De plus, on voit que le processus de réduction des durées des Situations opérationnelles (13 heures) à une durée d'essai de 2 heures, conduit à augmenter la valeur efficace d'accélération de la DSP la plus forte de 66%.

Il convient pour finir de comparer la Référence et la Spécification en termes de SDF de manière à vérifier le bon déroulement du processus d'optimisation en terme d'équivalence d'endommagement. Ce dernier est illustré par la Figure 9.91 qui suit.

Figure 9.91: Comparaison du SDF de Référence avec le SDF de la DSP d'essai

On constate une parfaite égalité entre les deux SDF, crédibilisant ainsi l'allure de la DSP d'essai obtenue. Cependant un léger écart est constaté après 1200Hz, sans conséquence sur l'allure de la DSP d'essai. Cet écart est présenté à la Figure qui suit.

Figure 9.92: Comparaison du SDF de Référence avec le SDF de la DSP d'essai
Pour finir on présente la valeur du coefficient d'exagération E_g estimé en terme de SRX permettant de crédibiliser le choix de la durée d'essai de 2 heures, sachant que l'on s'était fixé une marge de 1,4.

La valeur moyenne de ce coefficient d'exagération se situe à une valeur de 1,18 et est donc bien inférieure à la limite de 1.4 que l'on s'était fixée pour valider la durée d'essai.

A titre indicatif la comparaison, en termes de SRE, entre la Référence et la Spécification d'essai est la suivante :

![Figure 9.93: Coefficient d'Exagération associé à la DSP d'essai](image)

![Figure 9.94: Comparaison du SRE de Référence avec le SRE de la DSP d'essai](image)
9.10.2. Spécification d'essais associée aux Situations de Transport Logistiques S1 à S4

Conformément aux résultats de la Synthèse des Situations S1, S2, S3 et S4 exposée au §9.9.2 précédent, la spécification d'essais à réaliser sera constituée d'une Sévérité de Choc définie en terme de SRC et d'une Sévérité de vibrations définie en terme de DSP. Le synoptique associée à cette spécification d'essais est donc le suivant :

Figure 9.95 : Processus d'élaboration de la Spécification vibratoire associée aux Situations de Transport Logistique S1, S2, S3, et S4
En ce qui concerne les facteurs d'essai (FE), ces derniers sont équivalents à ceux déjà calculés pour la Spécification d'essais associée aux Situations de Transport Logistique. On a donc :

- pour les SRE, SRX et SRC : FE = 1,14
- et pour les SDF : FE = 3,93

Les Spectres de Référence en termes de SRE et de SRX sont présentés respectivement dans les Figures 9.96 et 9.97 suivantes :

Figure 9.96: SRE de Référence associé à la Synthèse des Situations S1, S2, S3 et S4

Figure 9.97: SRX de Référence associé à la Synthèse des Situations S1, S2, S3 et S4
Le Spectre de Référence en terme de SDF est présenté à la Figure 9.98 suivante :

![Figure 9.98: SDF de Référence associé à la Synthèse des Situations S1, S2, S3 et S4](image)

Connaissant les valeurs des spectres de Référence, il est désormais possible d'estimer la DSP d'essai que l'on va noter DSP_{TL}(f) et que l'on va définir sur la bande de fréquences [5Hz, 2000Hz] pour une durée d'essai de 2 heures. Cette DSP d'essai est estimée par un "Retour inverse" qui correspond dans le cas présent à une approche d'équivalence d'endommagement par fatigue. En effet, on calcule les niveaux de la DSP d'essai [DSP_{TL}(f)] de manière à ce que son SDF soit égal au SDF de Référence, associé à la synthèse des Situations S1 à S4.

Pour se fixer une durée d'essai pertinente, il convient de regarder la marge qu'il existe entre la sévérité des chocs et des vibrations, associées aux Situations de Transport Logistique. Conformément à l'approche comparative existant entre les phénomènes déterministes (Chocs) et aléatoires (Vibrations), il convient de comparer le SRC de Référence avec le SRX de Référence [COL 07a]. On obtient alors la Figure 9.99 suivante.

![Figure 9.99: SRC et SRX de Référence associés à la Synthèse des Situations S1, S2, S3 et S4](image)

Compte tenu que le SRC de Référence est très majorant devant le SRX de Référence, il est possible de se fixer une durée d'essai très faible. On se fixe donc une durée de 2 heures comme pour le cas du Transport Tactique. Cette durée d'essai sera optimisée si nécessaire de manière à limiter la valeur du coefficient d'exagération E_g à 1,4 qui constitue un coefficient d'exagération acceptable.
La DSP d'essai DSP_TL(f) estimée à endommagement constant sur une durée de 2 heures est définie sur la bande de fréquences [5Hz, 2000Hz] et à pour valeurs efficaces :

\[
\begin{align*}
&\text{Accélération efficace} = 1.52 \text{ m/s}^2 \\
&\text{Vitesse efficace} = 0.133 \text{ mm/s} \\
&\text{Déplacement efficace} = 0.353 \text{ mm}
\end{align*}
\]

Son allure spectrale est présentée à la Figure 9.100 suivante :

![Figure 9.100: DSP d'essai associée à la synthèse des Situations de Transport Logistique S1 à S4](image)

La pertinence de cette Spécification d'essai est démontrée en positionnant la DSP d'essai DSP_TL(f) par rapport aux DSP les plus fortes des Situations S1 à S4 qui sont respectivement dénommées VMR_CL5(f), CAM_03(f), CA_01(f), C160_04(f) et VBV(f). On obtient alors la Figure 9.101 suivante.

![Figure 9.101: Comparaison de la DSP d'essai avec les DSP des Situations S1 à S4, objets de la Synthèse](image)
A ce stade, on constate que la DSP d'essai enveloppe de façon très optimale tous les pics présents sur les cinq DSP des Situations S1 à S4, objets de cette synthèse. De plus, on voit que le processus de réduction des durées des Situations opérationnelles (~226 heures) à une durée d'essai de 2 heures, conduit à augmenter la valeur efficace d'accélération de la DSP la plus forte de 71%.

Il convient pour finir de comparer la Référence et la Spécification en termes de SDF de manière à vérifier le bon déroulement du processus d'optimisation en terme d'équivalence d'endommagement. Ce dernier est illustré par la Figure 9.102 qui suit.

![Figure 9.102: Comparaison du SDF de Référence avec le SDF de la DSP d'essai](image)

On constate une parfaite égalité entre les deux SDF, crédibilisant ainsi l'allure de la DSP d'essai obtenue. Cependant un léger écart est constaté entre 600Hz et 1600Hz, sans conséquence sur l'allure de la DSP d'essai. Cet écart est présenté à la Figure qui suit.

![Figure 9.103: Comparaison du SDF de Référence avec le SDF de la DSP d'essai](image)
Pour finir on présente la valeur du coefficient d'exagération \(E_g \) estimé en terme de SRX permettant de crédibiliser le choix de la durée d'essai de 2 heures, sachant que l'on s'était fixé une marge de 1,4.

La valeur moyenne de ce coefficient d'exagération se situe à une valeur de 1,17 et est donc bien inférieure à la limite de 1,4 que l'on s'était fixée pour valider la durée d'essai.

A titre indicatif la comparaison, en termes de SRE, entre la Référence et la Spécification d'essai est la suivante :

Pour finir, il convient désormais de comparer le SRC de Référence avec le SRX de l'essai, de manière à définir l'essai de chocs à réaliser en plus de l'essai de vibration DSP_TL(f) de 2 heures. Cette comparaison est présentée à la Figure 9.106 qui suit :
En affinant la comparaison dans les basses fréquences, on voit que l'essai de vibration DSP_TL(f) couvre le SRC de Référence avant 30Hz, il suffit donc de spécifier un choc d'essai en terme de SRC équivalent au SRC de Référence sur la bande de fréquences [30Hz, 2000Hz].
10. EXEMPLE 2 : PROFIL DE VIE D’UN SYSTEME D’ARMES

L’exemple 2 correspond à un système d’armes. Il est décrit par le graphe de situations « profil de vie d’un système d’armes » (figure 10.1) et par le tableau (tableau 10.1) décrivant pour chaque situation le nombre d’occurrence et la durée de chaque occurrence. On s’attachera dans cet exemple à mettre en œuvre la synthèse de l’environnement mécanique, qui correspond à l’étape 3 de la démarche, à partir des données décrites dans le §10.2.

Les résultats intermédiaires des différents traitements sont présentés dans l’axe Z uniquement. Par contre le programme d’essai final obtenu est présenté dans les trois axes.
10.1. **Étape 1 : Recensement des situations**

Le détail des opérations qui mettra en œuvre la totalité du graphe des situations du profil de vie est décrit par la figure 10.1. Ces opérations sont représentatives d’une durée de vie de 10 ans.

Figure 10.1: Profil de vie d’un système d’arme
<table>
<thead>
<tr>
<th>Numéro de la situation</th>
<th>Contenu de la situation</th>
<th>Occurrence</th>
<th>Durée</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>MANUTENTION Chargement, déchargement, voie ferrée, voie routière</td>
<td>3</td>
<td>0.5 h</td>
</tr>
<tr>
<td>S2.1</td>
<td>TRANSPORT LOGISTIQUE PAR VOIE ROUTIERE De l’usine au lieu de stockage</td>
<td>3</td>
<td>8 h</td>
</tr>
<tr>
<td>S2.2</td>
<td>TRANSPORT LOGISTIQUE PAR VOIE FERREE De l’usine au lieu de stockage</td>
<td>3</td>
<td>8 h</td>
</tr>
<tr>
<td>S3</td>
<td>MANUTENTION Chargement, déchargement, voie ferrée, voie routière</td>
<td>3</td>
<td>0.5 h</td>
</tr>
<tr>
<td>S4.1</td>
<td>STOCKAGE COURTE DUREE En attente d’utilisation</td>
<td>1</td>
<td>3 mois</td>
</tr>
<tr>
<td>S4.2</td>
<td>STOCKAGE LONGUE DUREE Stockage sur le lieu d’affectation</td>
<td>1</td>
<td>2 ans</td>
</tr>
<tr>
<td>S5</td>
<td>DESTOCKAGE Mission en condition opérationnelle sur le lieu de stockage</td>
<td>2</td>
<td>2 j</td>
</tr>
<tr>
<td>S6</td>
<td>CONTROLE DE BON FONCTIONNEMENT Prise en compte par les opérateurs</td>
<td>2</td>
<td>5 j</td>
</tr>
<tr>
<td>S7</td>
<td>MATERIEL EN DISPONIBILITE En attente d’utilisation</td>
<td>360</td>
<td>12 j</td>
</tr>
<tr>
<td>S8</td>
<td>EMPORT POUR ENTRAINEMENT Déplacement vers le lieu d’entraînement</td>
<td>240</td>
<td>1 h</td>
</tr>
<tr>
<td>S9</td>
<td>EXPLOITATION DU SYSTEME TYPE ENTRAINEMENT Entraînement du système seul, à poste fixe</td>
<td>120</td>
<td>2 j</td>
</tr>
<tr>
<td>S10</td>
<td>EMPORT POUR MANŒUVRE Déplacement d’un lieu d’affectation vers l’embarquement ferroviaire</td>
<td>24</td>
<td>20 h</td>
</tr>
<tr>
<td>S11</td>
<td>MANUTENTION Chargement, déchargement pour embarquement ferroviaire</td>
<td>24</td>
<td>0.5 h</td>
</tr>
<tr>
<td>S12</td>
<td>TRANSPORT LOGISTIQUE VOIE FERREE Déplacement vers le lieu de manœuvre</td>
<td>24</td>
<td>20 h</td>
</tr>
<tr>
<td>S13</td>
<td>MANUTENTION Déchargement, chargement embarquement ferroviaire</td>
<td>24</td>
<td>0.5 h</td>
</tr>
<tr>
<td>S14</td>
<td>EMPORT POUR MANŒUVRE Déplacement du lieu de débarquement vers la zone de manœuvre</td>
<td>24</td>
<td>1.5 h</td>
</tr>
<tr>
<td>S15</td>
<td>EXPLOITATION DU SYSTEME TYPE MANŒUVRE Exploitation interarmées</td>
<td>24</td>
<td>5 j</td>
</tr>
<tr>
<td>S16</td>
<td>EMPORT EN UTILISATION TACTIQUE Déplacement tactique en cours de manœuvre</td>
<td>36</td>
<td>1 h</td>
</tr>
<tr>
<td>S17</td>
<td>EMPORT POUR MANŒUVRE Déplacement du lieu d’affectation vers le lieu de</td>
<td>12</td>
<td>46 h</td>
</tr>
<tr>
<td>Numéro de la situation</td>
<td>Contenu de la situation</td>
<td>Occurrence</td>
<td>Durée</td>
</tr>
<tr>
<td>------------------------</td>
<td>-------------------------</td>
<td>------------</td>
<td>-------</td>
</tr>
<tr>
<td>S18</td>
<td>EMPORT POUR ACHEMINEMENT HORS METROPOLE Déplacement vers le lieu d’embarquement, débarquement air/mer</td>
<td>6</td>
<td>2 à 8 h</td>
</tr>
<tr>
<td>S19</td>
<td>MANUTENTION Chargement, déchargement sur le lieu d’embarquement</td>
<td>6</td>
<td>2 h</td>
</tr>
<tr>
<td>S20.1</td>
<td>TRANSPORT LOGISTIQUE PAR VOIE MARITIME Transport par porte container vers le lieu de destination</td>
<td>6</td>
<td>30 j</td>
</tr>
<tr>
<td>S20.2</td>
<td>TRANSPORT LOGISTIQUE PAR VOIE AERIENNE Transport vers le lieu d’utilisation hors métropole</td>
<td>6</td>
<td>48 h</td>
</tr>
<tr>
<td>S21</td>
<td>MANUTENTION Déchargement, chargement sur le lieu de débarquement ou d’embarquement</td>
<td>6</td>
<td>2 h</td>
</tr>
<tr>
<td>S22</td>
<td>EMPORT VERS LE LIEU D’UTILISATION HORS METROPOLE Déplacement du lieu de débarquement vers le lieu d’utilisation</td>
<td>6</td>
<td>4h</td>
</tr>
<tr>
<td>S23</td>
<td>MATERIEL EN DISPONIBILITE HORS METROPOLE En attente d’exploitation</td>
<td>3</td>
<td>4 j</td>
</tr>
<tr>
<td>S24</td>
<td>EMPORT VERS LE LIEU D’UTILISATION HORS METROPOLE Déplacement vers le lieu d’exploitation</td>
<td>6</td>
<td>6 h</td>
</tr>
<tr>
<td>S25</td>
<td>EXPLOITATION DU SYSTEME HORS METROPOLE Utilisation tactique</td>
<td>3</td>
<td>10 mois</td>
</tr>
<tr>
<td>S26</td>
<td>EMPORT POUR UTILISATION TACTIQUE HORS METROPOLE Déplacement tactique</td>
<td>40</td>
<td>2 h</td>
</tr>
</tbody>
</table>

Tableau 10-1: Description et occurrences des situations
10.2. **Etape 2 : Détermination des données réelles associées aux situations**

Certaines situations ne sont pas génératrices de vibrations comme S4.1, S4.2, S5, S6, S7, S9, S15, S23, S25 et n’ont pas de données associés. Elles ne seront pas prise en compte pour la détermination du programme d’essai d’environnement.

Les données d’environnement caractérisant chacune des situations, ont été fournies par le LRBA. Ces données sont disponibles sur le CD d’accompagnement de ce guide. Elles se présentent sous forme de DSP d’accélération, représentées par des graphes de DPSA en fonction de la fréquence, ou de signaux temporels.

Par exemple, pour ce qui concerne la situation de roulage en transport tactique S26, elle est représentée par le temporel de la figure 10.2, qui met en évidence une évolution non stationnaire (Choc plus aléatoire).

![Figure 10.2: Signal temporel du transport tactique S26](image)

Nous avons représenté dans le tableau 10.2 l’ensemble des données correspondant à chaque situation par type d’opération ainsi que sa durée d’apparition.
<table>
<thead>
<tr>
<th>Type opération</th>
<th>Mesure disponible</th>
<th>Données</th>
<th>Paramètres personnalisation proposés</th>
<th>N° de situation</th>
</tr>
</thead>
<tbody>
<tr>
<td>transport routier et manutention</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chocs joints dilatations</td>
<td>temporel</td>
<td>autoroute (4 chocs/heure) - bonne route (2 chocs/heure) - village (2 chocs/heure)</td>
<td>S2.1 - S8 - S10 - S14 - S17 - S18 - S22 - S24</td>
<td></td>
</tr>
<tr>
<td>chocs mauvaise route</td>
<td>temporel</td>
<td>mauvaise route (2 chocs/heure)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>passage à niveau</td>
<td>temporel</td>
<td>bonne route (4 chocs/heure) - village (2 chocs/heure)</td>
<td>S2.1 - S8 - S10 - S14 - S17 - S18 - S22 - S24</td>
<td></td>
</tr>
<tr>
<td>ralentisseurs</td>
<td>temporel</td>
<td>autoroute (4 chocs/heure) - bonne route (2 chocs/heure) - village (2 chocs/heure)</td>
<td>S2.1 - S8 - S10 - S14 - S17 - S18 - S22 - S24</td>
<td></td>
</tr>
<tr>
<td>chariot élévateur 15km/h</td>
<td>DSP</td>
<td>Appliquer la durée d'essais</td>
<td>S1 - S3 - S11 - S13 - S19 - S21</td>
<td></td>
</tr>
<tr>
<td>G260 - autoroute 90km/h</td>
<td>DSP</td>
<td>70% du temps</td>
<td>S2.1 - S8 - S10 - S14 - S17 - S18 - S22 - S24</td>
<td></td>
</tr>
<tr>
<td>G260 - bonne route 70km/h</td>
<td>DSP</td>
<td>25% du temps</td>
<td>S2.1 - S8 - S10 - S14 - S17 - S18 - S22 - S24</td>
<td></td>
</tr>
<tr>
<td>G260 - village 40km/h</td>
<td>DSP</td>
<td>5% du temps</td>
<td>S2.1 - S8 - S10 - S14 - S17 - S18 - S22 - S24</td>
<td></td>
</tr>
<tr>
<td>G300 - autoroute 90km/h</td>
<td>DSP</td>
<td>70% du temps</td>
<td>S2.1 - S8 - S10 - S14 - S17 - S18 - S22 - S24</td>
<td></td>
</tr>
<tr>
<td>G300 - bonne route 70km/h</td>
<td>DSP</td>
<td>25% du temps</td>
<td>S2.1 - S8 - S10 - S14 - S17 - S18 - S22 - S24</td>
<td></td>
</tr>
<tr>
<td>G300 - village 40km/h</td>
<td>DSP</td>
<td>5% du temps</td>
<td>S2.1 - S8 - S10 - S14 - S17 - S18 - S22 - S24</td>
<td></td>
</tr>
<tr>
<td>Transport maritime</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAR - 13 nœuds</td>
<td>DSP</td>
<td>60% du temps</td>
<td>S20.1</td>
<td></td>
</tr>
<tr>
<td>VAR - 15 nœuds</td>
<td>DSP</td>
<td>30% du temps</td>
<td>S20.1</td>
<td></td>
</tr>
<tr>
<td>VAR - 20 nœuds</td>
<td>DSP</td>
<td>10% du temps</td>
<td>S20.1</td>
<td></td>
</tr>
<tr>
<td>Transport ferroviaire</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Très bonne voie</td>
<td>DSP</td>
<td>60% du temps</td>
<td>S2.2 - S12</td>
<td></td>
</tr>
<tr>
<td>bonne voie</td>
<td>DSP</td>
<td>30% du temps</td>
<td>S2.2 - S12</td>
<td></td>
</tr>
<tr>
<td>voie moyenne</td>
<td>DSP</td>
<td>10% du temps</td>
<td>S2.2 - S12</td>
<td></td>
</tr>
<tr>
<td>Transport aérien</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C130 - approche</td>
<td>DSP</td>
<td>5 minutes / 8 heures</td>
<td>S20.2</td>
<td></td>
</tr>
<tr>
<td>C130 - atterrissage</td>
<td>DSP</td>
<td>1 minute / 8 heures</td>
<td>S20.2</td>
<td></td>
</tr>
<tr>
<td>C130 - décollage</td>
<td>DSP</td>
<td>5 minutes / 8 heures</td>
<td>S20.2</td>
<td></td>
</tr>
<tr>
<td>C130 - descente</td>
<td>DSP</td>
<td>20 minutes / 8 heures</td>
<td>S20.2</td>
<td></td>
</tr>
<tr>
<td>C130 - montée en altitude</td>
<td>DSP</td>
<td>40 minutes / 8 heures</td>
<td>S20.2</td>
<td></td>
</tr>
<tr>
<td>C130 - palier</td>
<td>DSP</td>
<td>6 heures 30 minutes / 8 heures</td>
<td>S20.2</td>
<td></td>
</tr>
<tr>
<td>C130 - point fixe</td>
<td>DSP</td>
<td>9 minutes / 8 heures</td>
<td>S20.2</td>
<td></td>
</tr>
<tr>
<td>C130 - roulage</td>
<td>DSP</td>
<td>10 minutes / 8 heures</td>
<td>S20.2</td>
<td></td>
</tr>
<tr>
<td>Transport aérien</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C160 - approche</td>
<td>DSP</td>
<td>5 minutes / 8 heures</td>
<td>S20.2</td>
<td></td>
</tr>
<tr>
<td>Type opération</td>
<td>Mesure disponible</td>
<td>Données</td>
<td>Paramètres personnalisation proposés</td>
<td>N° de situation</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------------------</td>
<td>-----------------</td>
<td>---------------------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>C160 - atterrissage</td>
<td>DSP</td>
<td>1 minute / 8 heures</td>
<td></td>
<td>S20.2</td>
</tr>
<tr>
<td>C160 - décollage</td>
<td>DSP</td>
<td>5 minutes / 8 heures</td>
<td></td>
<td>S20.2</td>
</tr>
<tr>
<td>C160 - descente</td>
<td>DSP</td>
<td>20 minutes / 8 heures</td>
<td></td>
<td>S20.2</td>
</tr>
<tr>
<td>C160 - montée en altitude</td>
<td>DSP</td>
<td>40 minutes / 8 heures</td>
<td></td>
<td>S20.2</td>
</tr>
<tr>
<td>C160 - palier</td>
<td>DSP</td>
<td>6 heures 30 minutes / 8 heures</td>
<td></td>
<td>S20.2</td>
</tr>
<tr>
<td>C160 - point fixe</td>
<td>DSP</td>
<td>9 minutes / 8 heures</td>
<td></td>
<td>S20.2</td>
</tr>
<tr>
<td>C160 - roulage</td>
<td>DSP</td>
<td>10 minutes / 8 heures</td>
<td></td>
<td>S20.2</td>
</tr>
</tbody>
</table>

Utilisation tactique

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chocs terrain</td>
<td>temporel</td>
<td>400 chocs terrain (APG) et 160 chocs terrain (rampe)</td>
<td>S26 - S16</td>
<td></td>
</tr>
<tr>
<td>Tirs</td>
<td>temporel</td>
<td>250 chocs (tir tourelle 9 heures) et 250 chocs (tir tourelle 12 heures)</td>
<td>S26 - S16</td>
<td></td>
</tr>
<tr>
<td>Vibrations terrain</td>
<td>temporel</td>
<td>Appliquer la durée d'essais</td>
<td></td>
<td>S26 - S16</td>
</tr>
</tbody>
</table>

Tableau 10-2: Description des données associées à chaque situation
10.3. Etape 3 : Synthèse des situations

10.3.1. Paramètres pour la synthèse

Les paramètres choisis pour la synthèse sont :

\[b = 8 \]
\[K = C = 1 \]
Amortissement du système à un DDL = 5%
Bande de fréquence : 0.5 Hz-2000Hz
Résolution : 0.5 Hz

L’analyse du graphe des situations fait apparaître que l’ensemble des situations sont toutes en séries. Nous avons donc regroupé ces situations par type d’opération.

Les synthèses sont faites en prenant en compte l’ensemble des vibrations aléatoires d’un coté (DSP et temporel) et les chocs (temporels) d’un autre afin de définir un programme d’essai aléatoire et un programme choc.

10.3.2. Analyse des vibrations aléatoires

Dans un premier temps nous calculons la durée totale par situation de type aléatoire à partir du graphe de situation du profil de vie (Nombre d’occurrence x Durée) Le cumul des heures par situation apparaît dans le tableau 10.3 suivant :

<table>
<thead>
<tr>
<th>N° de situation</th>
<th>Durée totale en heures</th>
<th>Type opération</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>1.5</td>
<td>Manutention</td>
</tr>
<tr>
<td>S2.1</td>
<td>24</td>
<td>Transport routier</td>
</tr>
<tr>
<td>S2.2</td>
<td>24</td>
<td>Transport voie ferrée</td>
</tr>
<tr>
<td>S3</td>
<td>1.5</td>
<td>Manutention</td>
</tr>
<tr>
<td>S8</td>
<td>240</td>
<td>Transport routier</td>
</tr>
<tr>
<td>S10</td>
<td>36</td>
<td>Transport routier</td>
</tr>
<tr>
<td>S11</td>
<td>12</td>
<td>Manutention</td>
</tr>
<tr>
<td>S12</td>
<td>480</td>
<td>Transport voie ferrée</td>
</tr>
<tr>
<td>S13</td>
<td>12</td>
<td>Manutention</td>
</tr>
<tr>
<td>S14</td>
<td>36</td>
<td>Transport routier</td>
</tr>
<tr>
<td>S16</td>
<td>36</td>
<td>Déplacement tactique</td>
</tr>
<tr>
<td>S17</td>
<td>552</td>
<td>Transport routier</td>
</tr>
<tr>
<td>S18</td>
<td>48</td>
<td>Transport routier</td>
</tr>
<tr>
<td>S19</td>
<td>12</td>
<td>Manutention</td>
</tr>
<tr>
<td>S20.1</td>
<td>4320</td>
<td>Transport maritime</td>
</tr>
<tr>
<td>S20.2</td>
<td>288</td>
<td>Transport aérien</td>
</tr>
<tr>
<td>S21</td>
<td>12</td>
<td>Manutention</td>
</tr>
<tr>
<td>S22</td>
<td>24</td>
<td>Transport routier</td>
</tr>
<tr>
<td>S24</td>
<td>36</td>
<td>Transport routier</td>
</tr>
<tr>
<td>S26</td>
<td>80</td>
<td>Déplacement tactique</td>
</tr>
</tbody>
</table>

Tableau 10-3: Bilan des durée totales par situation
10.3.2.1 Synthèse DSP pour la manutention

Les situations S1, S3, S11, S13, S19 et S21 sont définies par une DSP (chariot élévateur 15 km/h) dans chacun des trois axes sur une durée totale de 51 heures. La synthèse de l’ensemble des situations pour la manutention est obtenue en suivant la figure 10.3.

La figure 10.4 représente le résultat (SRE et SDF) pour l’axe Z de cette synthèse.

Figure 10.3: Synthèse pour la manutention
10.3.2.2. Synthèse DSP pour le transport routier

Le transport routier défini en DSP apparaît dans les situations S2.1, S8, S10, S14, S16, S17, S18, S22, S24 pour une durée totale de 996 heures décomposée en :
- 687 heures et 12 minutes d’autoroute (70 %),
- 249 heures de bonne route (25 %),
- 49 heures 48 minutes de route « village » (5%).

Pour prendre en compte les données des 2 véhicules G260 et G300, une enveloppe des 2 DSP par axe et type de route sera réalisée. La synthèse de l’ensemble des situations pour le transport routier est obtenue en suivant la figure 10.5.
La figure 10.6 représente le résultat (SRE et SDF) pour l’axe Z de cette synthèse.
Figure 10.5: Synthèse pour le transport routier

Figure 10.6: SRE et SDF pour le transport routier en Z
10.3.2.3. Synthèse DSP pour le transport voie ferrée.

Le transport voie ferrée défini en DSP apparaît dans les situations S2.2, S12 pour une durée totale de 504 heures décomposée en :
- 302 Heures et 24 minutes de très bonne voie (60 %),
- 151 Heures et 12 minutes de bonne voie (30 %),
- 50 Heures 24 minutes de voie moyenne (10%).

La synthèse de l’ensemble des situations pour le transport voie ferrée est obtenue en suivant la figure 10.7.
La figure 10.8 représente le résultat (SRE et SDF) pour l’axe Z de cette synthèse.

Figure 10.7: Synthèse pour le transport voie ferrée
10.3.2.4 Synthèse DSP pour le transport maritime.

Le transport maritime défini en DSP apparaît dans la situation S20.1 pour une durée de 4320 heures décomposée en :
- 2592 Heures à 13 nœuds (60 %),
- 1296 Heures à 15 nœuds (30 %),
- 432 Heures à 20 nœuds (10%).

La synthèse de l’ensemble des situations pour le transport maritime est obtenue en suivant la figure 10.9.

La figure 10.10 représente le résultat (SRE et SDF) pour l’axe Z de cette synthèse.
Figure 10.9: Synthèse pour le transport maritime

Figure 10.10: SRE et SDF pour le transport maritime en Z
10.3.2.5. Synthèse DSP pour le transport aérien

Le transport aérien défini en DSP apparaît dans la situation S20.2 pour une durée totale de 288 heures décomposée en :
- 5 Heures et 24 minutes en point fixe (9 minutes par tranche de 8 heures),
- 6 Heures de roulage (10 minutes par tranche de 8 heures),
- 3 Heures de décollage (5 minutes par tranche de 8 heures),
- 24 Heures de montée en altitude (40 minutes par tranche de 8 heures),
- 234 Heures en palier (6 heures 30 minutes par tranche de 8 heures),
- 12 Heures de descente (20 minutes par tranche de 8 heures),
- 3 heures d’approche (5 minutes par tranche de 8 heures),
- 36 minutes d’atterrissage (1 minute par tranche de 8 heures)

Pour prendre en compte les 2 avions C130 et C160, une enveloppe des 2 DSP par axe et type de mesure sera réalisée. La synthèse de l’ensemble des situations pour le transport aérien est obtenue en suivant la figure 10.11.
La figure 10.12 représente le résultat (SRE et SDF) pour l’axe Z de cette synthèse.

Figure 10.11: Synthèse pour le transport aérien
10.3.2.6 Synthèse DSP pour le déplacement tactique

Le déplacement tactile défini en temporel apparaît dans les situations S16 et S26 pour une durée totale de 116 heures.

Nous avons dans un premier temps extrait les chocs du signal d’origine à l’aide d’un logiciel de traitement du signal puis calculé la DSP du signal temporel sans les chocs. La figure 10.13 illustre cette extraction.

La synthèse de l’ensemble des situations pour le déplacement tactique est obtenue en suivant la figure 10.14.

La figure 10.15 représente le résultat (SRE et SDF) pour l’axe Z de cette synthèse.
Extraction du choc dans le signal temporel

Diagramme

- **Figure 10.13**: Extraction du choc dans le signal temporel

 - **Déplacement tactique**: Véhicule à roues (3dsp)

 - **Calcul SDF et SRE**

 - 116 heures
 - $b=8$, $c=10$
 - 0.5 à 2000 Hz, 0.5 Hz
 - (3 SRS et 3 SDF)

 - **3 SRE et 3 SDF (DSP tactique)**

Synthèse pour le déplacement tactique

Figure 10.14: Synthèse pour le déplacement tactique
10.3.3. Analyse des chocs

Les chocs apparaissent dans le cas du transport routier et du déplacement tactique. Il est nécessaire dans un premier temps de définir le nombre total de chocs par type de chocs à partir du graphe de situation du profil de vie (Nombre de choc/heure x Durée) Le nombre de chocs par situation apparaît dans le tableau 10.4.

<table>
<thead>
<tr>
<th>Cumul des chocs par type de situation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type de choc</td>
</tr>
<tr>
<td>Transport routier</td>
</tr>
<tr>
<td>chocs joints de dilatation</td>
</tr>
<tr>
<td>chocs mauvaise route</td>
</tr>
<tr>
<td>chocs passage à niveau</td>
</tr>
<tr>
<td>chocs ralentisseurs</td>
</tr>
<tr>
<td>Déplacement tactique</td>
</tr>
<tr>
<td>chocs terrain APG</td>
</tr>
<tr>
<td>chocs terrain rampe</td>
</tr>
<tr>
<td>tir tourelle 9 heures</td>
</tr>
<tr>
<td>tir tourelle 12 heures</td>
</tr>
<tr>
<td>chocs dans signal dsp</td>
</tr>
</tbody>
</table>

Tableau 10-4: Nombre de chocs par situations
10.3.3.1. Synthèse choc pour le transport routier

Les chocs du transport routier apparaissent dans les situations S2.1, S8, S10, S14, S16, S17, S18, S22, S24 pour une durée totale de 996 heures correspondant au nombre de chocs défini ci-dessus.

Figure 10.16: Synthèse des chocs pour le transport routier
10.3.3.2. Synthèse choc pour le transport tactique

Les chocs du transport tactique apparaissent dans les situations S26, S16 pour une durée totale de 116 heures correspondant au nombre de chocs défini ci-dessus.

Dans le cas de la situation S26, nous avons utilisé les 4 chocs suivants : APG, RAMPE, tir tourelle et le choc extrait du signal vibration terrain (voir figure 10.17).

Figure 10.17: Choc extrait du signal vibration terrain.
Figure 10.18: Synthèse des chocs pour le déplacement tactique
10.4. **Etape 4 : Etablissement du programme de qualification**

A partir des synthèses faites en aléatoire et choc les deux programmes d’essais sont définis en utilisant les paramètres suivants :

- Bande de fréquence de la spécification DSP: 5 à 2000 Hz
- Résolution de la DSP : 0.5 Hz.
- Coefficient forfaitaire : Coefficient de garantie x Facteur d’essai = 1.3
- Coefficient d’exagération : 2
- Amortissement du système à 1dl : 5%
- Résolution du SRC : 1/6 octave.

10.4.1. Programme d’essai pour les vibrations aléatoires

La synthèse et la définition du programme est faite conformément à la figure 10.19.

Les huit différentes étapes pour définir la spécification d’essai aléatoire sont :

1 : Rassemblement des synthèses (SRE et SDF) de chaque type d’opération.

Figure 10.19: Synthèse des situations en aléatoire
2 : Calcul de l’enveloppe des SRE et la somme des SDF par axe.

![Envelope SRE et SDF de l’environnement aléatoire](image)

Figure 10.20: SRE et SDF de l’environnement aléatoire

3 : Application du coefficient forfaitaire sur chaque SRE (1.3) et sur chaque SDF (1.3^8 = 8.157)

4 : Retour par équivalence sur le SDF en DSP sur une durée d’une heure.

![DSP retour inverse Axe OZ](image)

Figure 10.21: DSP équivalente en Z pour 1 heure d’essai.
5. Calcul du SRE des spectres d’essais (X, Y, Z) : $\text{SRE}_{\text{essais}}$

6. Calcul du coefficient d’exagération ($\text{SRE}_{\text{essais}} / \text{SRE}_{\text{environnement}}$) et comparaison à la valeur limite 2 (coefficient d’exagération). La figure 10.22 représente le coefficient d’exagération pour l’axe Z.

<table>
<thead>
<tr>
<th>Date : 25/04/2008</th>
<th>Calcul du coefficient d’exagération ($\text{SRE}{\text{essais}} / \text{SRE}{\text{environnement}}$) suivant l’axe CZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paramètres de la personnalisation - Durée 1 heure - $O=10$ - $B=8$.</td>
<td></td>
</tr>
</tbody>
</table>

Figure 10.22: Coefficient d’exagération en Z

7. Choix d’une durée supérieure pour diminuer ce coefficient qui dépasse la valeur limite de 2.

Compte tenu du fait que le coefficient d’exagération atteint au maximum 2.62, on choisi d’augmenter la durée d’essai à 5 heures pour diminuer la sévérité de l’essai.

8. Retour par équivalence sur le SDF en DSP sur une durée de 5 heures.

Les figures 10.23, 10.24, 10.25 donnent le programme d’essai à réaliser en X, Y, Z sur une durée de 5 heures.
Figure 10.23: DSP équivalente en X pour 5 heures d’essai.

Figure 10.24: DSP équivalente en Y pour 5 heures d’essai.
10.4.2. Programme d’essai pour les chocs

La synthèse et la définition du programme est faite conformément à la figure 10.26.
Les 11 différentes étapes pour définir la spécification d’essai en chocs sont :

1 : Rassemblement des SDF par type d’opération.

2 : Calcul de la somme des SDF par axe. La figure 10.27 représente le SDF résultat en Z.
3 : Application du coefficient forfaitaire sur chaque SDF ($1.3^8 = 8.157$) pour déterminer le SDF cumulé avec ce coefficient.

4 : Rassemblement des SRC par type d’opération

5. Calcul de l’enveloppe des SRC par axe. La figure 10.28 représente le SRC résultat en Z.
6. Application du coefficient forfaitaire sur chaque SRC (1.3) pour déterminer le SRC d’essai.

7. Détermination d’un l’accélérogramme à partir du SRC d’essai en utilisant des sinus amortie et sur une durée de choc de 4 secondes (voir figure 10.29).

9. Calcul du rapport entre le SDF de l’accélérogramme et le SDF cumulé des chocs (figure 10.30).
 On choisie sur cette courbe le nombre de chocs à réaliser comme :
 - Soit le plus grand rapport en fréquence.
 - Soit le rapport à la première fréquence de résonnance de l’équipement si elle est connue.

Pour l’exemple nous avons choisi de définir le rapport entre les 2 SDF à la fréquence de 32.25 Hz. Nous obtenons alors les valeurs des nombre de chocs suivants (voir figure 10.30 à 10.32) :
 - En X : 54
 - En Y : 71
 - En Z : 219
<table>
<thead>
<tr>
<th>Date</th>
<th>Comparaison SDF de l'accélérogramme de référence avec le SDF cumulé suivant l'axeOX</th>
</tr>
</thead>
<tbody>
<tr>
<td>29/04/2008</td>
<td>Paramètres de la personnalisation : 56, Q=10, B=8</td>
</tr>
</tbody>
</table>

Figure 10.30: Comparaison des SDF cumulé et SDF de l'accélérogramme en X.

<table>
<thead>
<tr>
<th>Date</th>
<th>Comparaison SDF de l'accélérogramme de référence avec le SDF cumulé suivant l'axeOY</th>
</tr>
</thead>
<tbody>
<tr>
<td>29/04/2008</td>
<td>Paramètres de la personnalisation : 71, Q=10, B=8</td>
</tr>
</tbody>
</table>

Figure 10.31: Comparaison des SDF cumulé et SDF de l'accélérogramme en Y.

11. Définition de la spécification d’essai par le SRC et le nombre de chocs ainsi calculé (figure 10.33 à 10.35).
10.4.3. Comparaison spécification d’essai en DSP et spectre DSP initiaux.
Il est intéressant de comparer les spectres d’essai obtenus en DSP avec les données initiales. Pour cela nous avons noté dans le tableau 10.5 les valeurs efficaces des DSP initiales à comparer aux valeurs efficaces des DSP d’essai : en X : 2.19g, en Y : 2.71g et en Z : 2.9g.

D’autre part les figures 10.36 à 10.39 représentent en Z la superposition de la DSP d’essai aux DSP initiales.

<table>
<thead>
<tr>
<th>Type opération</th>
<th>mesure</th>
<th>Valeur efficace en g (X)</th>
<th>Valeur efficace en g (Y)</th>
<th>Valeur efficace en g (Z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transport routier et manutention</td>
<td>chariot élévateur 15km/h</td>
<td>0.06</td>
<td>0.09</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>G260 - autoroute 90km/h</td>
<td>0.44</td>
<td>0.83</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td>G260 - bonne route 70km/h</td>
<td>0.46</td>
<td>0.67</td>
<td>0.59</td>
</tr>
<tr>
<td></td>
<td>G260 - village 40km/h</td>
<td>0.21</td>
<td>0.28</td>
<td>0.26</td>
</tr>
<tr>
<td></td>
<td>G300 - autoroute 90km/h</td>
<td>0.54</td>
<td>0.69</td>
<td>0.59</td>
</tr>
<tr>
<td></td>
<td>G300 - bonne route 70km/h</td>
<td>0.36</td>
<td>0.48</td>
<td>0.32</td>
</tr>
<tr>
<td></td>
<td>G300 - village 40km/h</td>
<td>0.31</td>
<td>0.43</td>
<td>0.26</td>
</tr>
<tr>
<td>Transport maritime</td>
<td>VAR - 13 nœuds</td>
<td>0.00199</td>
<td>0.00187</td>
<td>0.00339</td>
</tr>
<tr>
<td></td>
<td>VAR - 15 nœuds</td>
<td>0.00192</td>
<td>0.00181</td>
<td>0.00438</td>
</tr>
<tr>
<td></td>
<td>VAR - 20 nœuds</td>
<td>0.00228</td>
<td>0.00265</td>
<td>0.00484</td>
</tr>
<tr>
<td>Transport ferroviaire</td>
<td>Très bonne voie</td>
<td>0.91</td>
<td>0.86</td>
<td>1.02</td>
</tr>
<tr>
<td></td>
<td>bonne voie</td>
<td>0.34</td>
<td>0.62</td>
<td>0.66</td>
</tr>
<tr>
<td></td>
<td>voie moyenne</td>
<td>0.52</td>
<td>0.81</td>
<td>0.77</td>
</tr>
<tr>
<td>Transport aérien C130</td>
<td>C130 - approche</td>
<td>0.23</td>
<td>0.25</td>
<td>0.33</td>
</tr>
<tr>
<td></td>
<td>C130 - atterrissage</td>
<td>0.18</td>
<td>0.21</td>
<td>0.27</td>
</tr>
<tr>
<td></td>
<td>C130 - décollage</td>
<td>0.29</td>
<td>0.29</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>C130 - descente</td>
<td>0.23</td>
<td>0.22</td>
<td>0.19</td>
</tr>
<tr>
<td></td>
<td>C130 - montée en altitude</td>
<td>0.25</td>
<td>0.24</td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td>C130 - palier</td>
<td>0.2</td>
<td>0.22</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>C130 - point fixe</td>
<td>0.13</td>
<td>0.13</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td>C130 - roulage</td>
<td>0.07</td>
<td>0.06</td>
<td>0.07</td>
</tr>
<tr>
<td>Transport aérien C160</td>
<td>C160 - approche</td>
<td>0.23</td>
<td>0.23</td>
<td>0.21</td>
</tr>
<tr>
<td></td>
<td>C160 - atterrissage</td>
<td>0.29</td>
<td>0.27</td>
<td>0.32</td>
</tr>
<tr>
<td></td>
<td>C160 - décollage</td>
<td>0.08</td>
<td>0.07</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>C160 - descente</td>
<td>0.11</td>
<td>0.11</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>C160 - montée en altitude</td>
<td>0.14</td>
<td>0.13</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>C160 - palier</td>
<td>0.08</td>
<td>0.06</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>C160 - point fixe</td>
<td>0.1</td>
<td>0.08</td>
<td>0.09</td>
</tr>
</tbody>
</table>

Tableau 10-5: Valeurs efficaces des DSP initiales
Figure 10.36: Comparaison spectres transport routier et manutention et spectre d’essai en Z

Figure 10.37: Comparaison spectres transport maritime et ferroviaire et spectre d’essai en Z
11. EXEMPLE 3 : ELABORATION D'UN PROFIL DE VIE D'UN EQUIPEMENT DU DOMAINE CIVIL
Cet exemple concerne essentiellement l’élaboration du profil de vie prévu à l’étape 1 de la démarche de PCEM du profil de vie et concerne une application tirée du domaine civil : l’équipement concerné est un système de mesure de la qualité de l’air.

Un organisme chargé de la surveillance de la qualité de l’air en agglomérations souhaite faire l’acquisition d’un système de mesure lui permettant d’évaluer la teneur de l’atmosphère urbaine en polluants.

Il faut rédiger la spécification technique de besoin pour le compte de cet organisme et spécifiquement des éléments relatifs à la prise en compte des contraintes de l’environnement subi par le matériel.

La centrale de mesure permettra l’acquisition simultanée de 5 voies de mesure. La configuration et les résultats de mesure seront stockés sur un support informatique pour un traitement ultérieur. Une restitution immédiate sur support papier devra être possible.

Des laboratoires existent dans les villes A, B, C, D et E.

Le matériel sera basé dans laboratoire de la ville A. La durée de vie souhaitée est de 5 ans.

Le système de mesure sera utilisé dans l’un des « véhicules laboratoire » (camion ou véhicule léger existants). Il pourra être utilisé véhicule à l’arrêt (60 % du temps) ou véhicule en déplacement (40 % du temps).

Chaque année, le matériel sera utilisé une fois par chacun des quatre laboratoires des villes B à E.

Son acheminement sera fait :
- par voie aérienne vers B,
- par voie routière vers C,
- par voie ferrée vers D et E.

Le raccordement des chaînes de mesure sera fait une fois par an. La durée d’indisponibilité ne dépassera pas une semaine pour cette opération.

Les hypothèses retenues pour l’élaboration du profil de vie sont :
- l’ensemble des chiffres donnés ci-après est valable pour un système de mesure de pollution atmosphérique utilisé par un laboratoire parisien sur sa durée de vie (5 ans).
- utilisation conventionnelle :
 - Dans 60% des cas, les mesures seront effectuées véhicule arrêté.
 - Dans 40% des cas, les mesures seront effectuées véhicule roulant.
- situation d’emploi spécifique :
 - Le système doit pouvoir subir, au cours de sa vie, 4 déplacements dans les villes B à E de 2 semaines au maximum par an, à raison de 4 jours ½ d’utilisation par semaine.
 - Les transferts se font depuis le laboratoire de A vers des laboratoires des villes B, C, D et E. Les acheminements du système vers les laboratoires B, C, D et E se feront par voie aérienne si la distance est supérieure à 600 km (B), par voie routière si la distance est inférieure à 400 km (C) et par voie ferrée dans les autres cas avec les liaisons nécessaires, et sont assurés par les utilisateurs.
- maintenance (étalonnage) :
 - Une semaine par an, le système subira un étalonnage.
Figure 11.1: Profil de vie d’un système de mesure de la qualité de l’air
Tableau des Occurrences

<table>
<thead>
<tr>
<th>Numéro de situation</th>
<th>Type</th>
<th>Libellé</th>
<th>Occurrence</th>
<th>Durée</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Manutention</td>
<td>Chargement / Déchargement dans véhicule pour trajet usine/laboratoire</td>
<td>2</td>
<td>5 min</td>
</tr>
<tr>
<td>2</td>
<td>Transport logistique par voie routière</td>
<td>Transport usine/laboratoire</td>
<td>1</td>
<td>30 min</td>
</tr>
<tr>
<td>3</td>
<td>Intervention sur le matériel</td>
<td>Entrée / Sortie du système de son coffret de transport</td>
<td>104</td>
<td>5 min</td>
</tr>
<tr>
<td>4</td>
<td>Mise à pose</td>
<td>Collage / Décollage pour recette fonctionnelle</td>
<td>2</td>
<td>2 h</td>
</tr>
<tr>
<td>5</td>
<td>Intervention sur le matériel</td>
<td>Recette fonctionnelle</td>
<td>1</td>
<td>8 h</td>
</tr>
<tr>
<td>6</td>
<td>Stockage</td>
<td>Stockage principal au laboratoire parisien</td>
<td>1920 h en 52 échi</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Manutention</td>
<td>Chargement / Déchargement pour transfert du système</td>
<td>160</td>
<td>5 min</td>
</tr>
<tr>
<td>8</td>
<td>Transport logistique par voie routière</td>
<td>transport logistique pour étonnagement</td>
<td>10</td>
<td>30 min</td>
</tr>
<tr>
<td>9</td>
<td>Mise à pose</td>
<td>Installation / Démontage au banc d'étalement</td>
<td>10</td>
<td>2 h</td>
</tr>
<tr>
<td>10</td>
<td>Stockage</td>
<td>En attente d'étonnagement à pose sous tension</td>
<td>5</td>
<td>12 h</td>
</tr>
<tr>
<td>11</td>
<td>Intervention sur le matériel</td>
<td>Enlancement du système</td>
<td>5</td>
<td>16 h</td>
</tr>
<tr>
<td>12</td>
<td>Stockage</td>
<td>En attente de départ au laboratoire dans son coffret de transport</td>
<td>352 h 30 min en 5 fois</td>
<td></td>
</tr>
</tbody>
</table>

DGA - DCE - LABA

© DGA 2009 – Tous droits réservés
Tableau des Occurrences

<table>
<thead>
<tr>
<th>Numéro de situation</th>
<th>Type</th>
<th>Libellé</th>
<th>Occurrence</th>
<th>Durée</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>A</td>
<td>Nése à poste</td>
<td>92</td>
<td>2 h</td>
</tr>
<tr>
<td>14</td>
<td>A</td>
<td>Stockage</td>
<td>3,4 min en 130; fois</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>A</td>
<td>Emport tactique par voie routière</td>
<td>1506</td>
<td>30 min</td>
</tr>
<tr>
<td>16</td>
<td>A</td>
<td>Emport tactique sur poste fixe</td>
<td>753</td>
<td>7 h</td>
</tr>
<tr>
<td>17</td>
<td>A</td>
<td>Emport tactique par voie routière</td>
<td>502</td>
<td>8 h</td>
</tr>
<tr>
<td>18</td>
<td>A</td>
<td>Transport logistique par voie routière</td>
<td>10</td>
<td>4 h 30 min</td>
</tr>
<tr>
<td>19</td>
<td>A</td>
<td>Transport logistique par voie routière</td>
<td>40</td>
<td>20 min</td>
</tr>
<tr>
<td>20</td>
<td>A</td>
<td>Stockage</td>
<td>20</td>
<td>30 min</td>
</tr>
<tr>
<td>21</td>
<td>A</td>
<td>Manutention</td>
<td>40</td>
<td>5 min</td>
</tr>
<tr>
<td>22</td>
<td>A</td>
<td>Transport logistique par voie ferrée</td>
<td>20</td>
<td>4 h</td>
</tr>
<tr>
<td>23</td>
<td>A</td>
<td>Transport logistique par voie routière</td>
<td>20</td>
<td>30 min</td>
</tr>
<tr>
<td>24</td>
<td>A</td>
<td>Stockage</td>
<td>10</td>
<td>1 h</td>
</tr>
</tbody>
</table>
Tableau des Occurrences

<table>
<thead>
<tr>
<th>Numéro de situation</th>
<th>Type</th>
<th>Libellé</th>
<th>Occurrence</th>
<th>Durée</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>Manipulation</td>
<td>Chargement / Déchargement en soute</td>
<td>20</td>
<td>15 min</td>
</tr>
<tr>
<td>26</td>
<td>Stockage</td>
<td>Attente en soute avant décollage</td>
<td>10</td>
<td>30 min</td>
</tr>
<tr>
<td>27</td>
<td>Transport logistique par voie aérienne</td>
<td>Transport logistique Paris/Province en avion</td>
<td>10</td>
<td>1 h 30 min</td>
</tr>
<tr>
<td>28</td>
<td>Stockage</td>
<td>Stockage principal en Province</td>
<td>1280 h en 40 bois</td>
<td></td>
</tr>
</tbody>
</table>

Tableau 11-1 : Tableau des occurrences du système de mesure de la qualité de l’air
Tableau des agents d'environnement mécaniques

<table>
<thead>
<tr>
<th>N°</th>
<th>Type de situation</th>
<th>Chocs</th>
<th>Vibrations de structures</th>
<th>Accélération constante</th>
<th>Compression</th>
<th>Mouvements de plate-forme</th>
<th>Déviation / Plongée</th>
<th>Vibrations acoustiques</th>
<th>Souffle</th>
<th>Déformations statiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Manipulation</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>2</td>
<td>Transport logistique par voie routière</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>3</td>
<td>Intervention sur le matériel</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>4</td>
<td>Mise à poste</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>5</td>
<td>Intervention sur le matériel</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>6</td>
<td>Stockage</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>7</td>
<td>Manipulation</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>8</td>
<td>Transport logistique par voie routière</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>9</td>
<td>Mise à poste</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>10</td>
<td>Stockage</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>11</td>
<td>Intervention sur le matériel</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>12</td>
<td>Stockage</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>13</td>
<td>Mise à poste</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>14</td>
<td>Stockage</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>15</td>
<td>Exportation par voie routière</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>16</td>
<td>Exportation par voie routière</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>17</td>
<td>Exportation par voie routière</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>18</td>
<td>Transport logistique par voie routière</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>19</td>
<td>Transport logistique par voie routière</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

DGA - DCE - LBBA
Tableau des agents d'environnement mécaniques

<table>
<thead>
<tr>
<th>N°</th>
<th>Type de situation</th>
<th>Chocs</th>
<th>Vibrations de structures</th>
<th>Accélération constante</th>
<th>Compression</th>
<th>Mouvement de plate-forme</th>
<th>Devers / Pente</th>
<th>Vibrations acoustiques</th>
<th>Souffle</th>
<th>Déformations statiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>Stockage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Maintenance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Transport logistique par voie ferrée</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Transport logistique par voie routière</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Stockage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Maintenance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Stockage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Transport logistique par voie aérienne</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Stockage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau 11-2 : Agents d’environnement du système de mesure de la qualité de l’air
REFERENCES

[CEN **] CEN WORKSHOP 10 « Recommendations issued by Expert Group 8 “Environmental engineering »

[COL 90b] COLIN B., « Modèle d'endommagement par fatigue d'un système à 1 d.d.1 soumis à une excitation gaussienne combinée à une raie sinusoïdale - Application à l'environnement vibratoire chenillé », Mécanique Matériaux Electricité n°434, Mai/Juin 1990, pp 68-75.

[GAM] GAM T13 « Spécifications d'essais en environnement pour les matériels militaires »

[HDD] Handbook for Dynamic Data Acquistion and Analysside Piersol et Himmelblau

[ITO] International Test Operations Procedure »

[LAL 89] Lalanne C., Personalization and Safety Factor, Institute of Environmental Sciences Symposium, USA, 1989.

[MIL **] MIL STD 810 G « Test method standard for environmental engineering considerations and laboratory test” Department of defence 1 January 2008

[OTA **] OTAN STANAG 4370 « Environmental testing » Edition 4 2008

INDEX

A

AECTP 200 ... 17
aléatoire ... 40
amortissement ... 79
aplatissement .. 39, 115
asymétrie .. 39, 115

B

Bâti .. 70
biais .. 66
bruit blanc ... 79
bruit de quantification ... 115

caractèreisation de l’environnement RÉEL ... 29
centrifugeuse ... 123
chaînes .. 239
choc .. 56
chocs pyrotechniques ... 115
chocs répétés .. 58
code de sanction .. 65
coefficient de garantie ... 19, 42, 49, 64
coefficient de garantie de la garantie .. 66
coefficient de variation .. 41, 49, 66
coefficient d'exagération ... 20
composante statique ... 142
conditions d’emploi ... 26
configuration du matériel ... 64
contrainte extrême .. 41
convolution .. 43
corrélation ... 45
Courbe de Woehler ... 25
courbe de Wöhler .. 32, 37, 42, 73, 81

déterminéiste .. 31
détecteur de détermination de l’environnement à simuler ... 31
densité de probabilité .. 41
densité de probabilité des pics ... 39
densité spectrale de puissance ... 49, 116
densités spectrales de puissance ... 19
dérives de zéro ... 114
DÉTERMINATION de L’ENVIRONNEMENT à simuler .. 31
diagramme de Goodman ... 142
Dissymétrie du signal .. 115
distribution de la contrainte ... 42
distribution de la résistance ... 42
distribution de Weibull .. 46, 68
distribution des pics de Rayleigh ... 34
distribution des pics les plus grands ... 109
distribution des valeurs instantanées .. 108
distribution normale .. 66
distributions normales ... 43
domaine extrême ... 12
domaine limite ... 12
domaine normal ... 12
dommage par fatigue ... 31, 79
DSP ... 55, 80
<table>
<thead>
<tr>
<th>Page</th>
<th>工序内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>121</td>
<td>Durée d’essais</td>
</tr>
<tr>
<td>21, 25</td>
<td>durée réduite</td>
</tr>
<tr>
<td>66</td>
<td>échantillonnage</td>
</tr>
<tr>
<td>81</td>
<td>endurance illimitée</td>
</tr>
<tr>
<td>45</td>
<td>entropie</td>
</tr>
<tr>
<td>23</td>
<td>enveloppe de DSP</td>
</tr>
<tr>
<td>19</td>
<td>enveloppe des densités spectrales de puissance</td>
</tr>
<tr>
<td>63</td>
<td>enveloppe des DSP</td>
</tr>
<tr>
<td>40</td>
<td>environnement</td>
</tr>
<tr>
<td>12</td>
<td>environnement attendu</td>
</tr>
<tr>
<td>13</td>
<td>environnement retenu</td>
</tr>
<tr>
<td>12</td>
<td>environnement spécifié</td>
</tr>
<tr>
<td>10</td>
<td>épreuve</td>
</tr>
<tr>
<td>19</td>
<td>équivalence de dommage par fatigue</td>
</tr>
<tr>
<td>23</td>
<td>équivalence de Dommage par Fatigue</td>
</tr>
<tr>
<td>24</td>
<td>équivalence des dommages</td>
</tr>
<tr>
<td>70, 74</td>
<td>essai</td>
</tr>
<tr>
<td>10</td>
<td>essais en environnement</td>
</tr>
<tr>
<td>66</td>
<td>estimation statistique</td>
</tr>
<tr>
<td>26</td>
<td>Etablissement du profil de vie ENVIRONNEMENT</td>
</tr>
<tr>
<td>40</td>
<td>événement</td>
</tr>
<tr>
<td>28, 49</td>
<td>événements</td>
</tr>
<tr>
<td>63</td>
<td>facteur d’exagération</td>
</tr>
<tr>
<td>68</td>
<td>facteur d’échelle</td>
</tr>
<tr>
<td>64</td>
<td>facteur d’essai</td>
</tr>
<tr>
<td>123</td>
<td>Faisabilité</td>
</tr>
<tr>
<td>73</td>
<td>fatigue oligocyclique</td>
</tr>
<tr>
<td>41</td>
<td>fonction de répartition</td>
</tr>
<tr>
<td>47</td>
<td>fonction intégrale Gamma</td>
</tr>
<tr>
<td>65</td>
<td>fonctionnement spécifique</td>
</tr>
<tr>
<td>50</td>
<td>forfaitaire</td>
</tr>
<tr>
<td>64</td>
<td>forfaitaires</td>
</tr>
<tr>
<td>38</td>
<td>fréquence d’échantillonnage</td>
</tr>
<tr>
<td>83</td>
<td>fretting corrosion</td>
</tr>
<tr>
<td>83</td>
<td>fretting fatigue</td>
</tr>
<tr>
<td>113</td>
<td>GAM EG13</td>
</tr>
<tr>
<td>113</td>
<td>GAM T13</td>
</tr>
<tr>
<td>108</td>
<td>gaussienne</td>
</tr>
<tr>
<td>39</td>
<td>gaussiens</td>
</tr>
<tr>
<td>39</td>
<td>générateurs de vibration mono spire</td>
</tr>
<tr>
<td>70</td>
<td>Goodman</td>
</tr>
<tr>
<td>113</td>
<td>historique</td>
</tr>
<tr>
<td>40</td>
<td>incertitude</td>
</tr>
<tr>
<td>140</td>
<td>incidents pendant les essais</td>
</tr>
<tr>
<td>43</td>
<td>indice de fiabilité</td>
</tr>
<tr>
<td>79</td>
<td>influence de la surtension</td>
</tr>
<tr>
<td>131</td>
<td>interaction dynamique</td>
</tr>
<tr>
<td>28</td>
<td>interfaces</td>
</tr>
<tr>
<td>78</td>
<td>Justifications de b = 5</td>
</tr>
<tr>
<td>62</td>
<td>l’AECTP 400</td>
</tr>
</tbody>
</table>

PR NORMDEF 0101

© DGA 2009 – Tous droits réservés
<table>
<thead>
<tr>
<th>Page</th>
<th>Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>140</td>
<td>programme d’essais</td>
</tr>
<tr>
<td>132</td>
<td>programme d’essai</td>
</tr>
<tr>
<td>62</td>
<td>programme d’essais</td>
</tr>
<tr>
<td>130</td>
<td>limitations des moyens d’essais</td>
</tr>
<tr>
<td>41</td>
<td>log-normale</td>
</tr>
<tr>
<td>82</td>
<td>Loi de PALMGREN</td>
</tr>
<tr>
<td>26</td>
<td>profil de vie système</td>
</tr>
<tr>
<td>26</td>
<td>profil de vie environnement</td>
</tr>
<tr>
<td>32</td>
<td>modèles opératoires</td>
</tr>
<tr>
<td>46</td>
<td>loi log-normale</td>
</tr>
<tr>
<td>41</td>
<td>loi normale standardisée</td>
</tr>
<tr>
<td>43</td>
<td>loi normale standardisée</td>
</tr>
<tr>
<td>46</td>
<td>lois de Weibull</td>
</tr>
<tr>
<td>45</td>
<td>lois log-normales</td>
</tr>
<tr>
<td>116</td>
<td>méthode des enveloppes de DSP</td>
</tr>
<tr>
<td>39</td>
<td>méthode déterministe</td>
</tr>
<tr>
<td>25</td>
<td>méthode du Rainflow</td>
</tr>
<tr>
<td>25</td>
<td>méthode par enveloppe des D.S.P</td>
</tr>
<tr>
<td>10, 17, 77, 113</td>
<td>MIL STD 810</td>
</tr>
<tr>
<td>32</td>
<td>modèle rhéologique</td>
</tr>
<tr>
<td>64</td>
<td>moyenne arithmétique</td>
</tr>
<tr>
<td>131</td>
<td>moyens de pilotage</td>
</tr>
<tr>
<td>71</td>
<td>multi point d’excitation</td>
</tr>
<tr>
<td>41</td>
<td>niveau de confiance</td>
</tr>
<tr>
<td>16, 62, 77</td>
<td>normes</td>
</tr>
<tr>
<td>122</td>
<td>paramètre de forme</td>
</tr>
<tr>
<td>47</td>
<td>période</td>
</tr>
<tr>
<td>10</td>
<td>Personnalisation du Matériel à son</td>
</tr>
<tr>
<td>124</td>
<td>Phase de définition</td>
</tr>
<tr>
<td>75</td>
<td>pilotage multi-excitation</td>
</tr>
<tr>
<td>42</td>
<td>probabilité de défaillance</td>
</tr>
<tr>
<td>43</td>
<td>probabilité de dépassement</td>
</tr>
<tr>
<td>67</td>
<td>profil de vie</td>
</tr>
<tr>
<td>10</td>
<td>profil de vie environnement</td>
</tr>
<tr>
<td>26</td>
<td>profil de vie système</td>
</tr>
<tr>
<td>64</td>
<td>programme d’essais</td>
</tr>
<tr>
<td>62</td>
<td>programme d'ëSS essais</td>
</tr>
<tr>
<td>132</td>
<td>programme d’essai</td>
</tr>
<tr>
<td>140</td>
<td>programme d’essais</td>
</tr>
<tr>
<td>14, 15, 26</td>
<td>quantile</td>
</tr>
<tr>
<td>44</td>
<td>R</td>
</tr>
<tr>
<td>115</td>
<td>Rapport Signal Bruit</td>
</tr>
<tr>
<td>55</td>
<td>réduction de durée</td>
</tr>
</tbody>
</table>

© DGA 2009 – Tous droits réservés
Réduction de durée 136
Réduction de la durée 54
réduire la durée 20
réduire le temps 63
règle de Miner 32
relation de Gerber 39
représentativité d’un essai 76
reproductibilité de l’essai 62
reproductibilité d'un essai 76
Responsabilités 15
Retour inverse à la DSP 57, 58

S

sanctions 139
Sanctions 65
sans plastification 73
saturation 115
SDF 55, 70
sécurité du matériau 65
sévérité « refuge » 16
sévérité de l’essai 13
sévérités d’essais forfaitaires 16
sévérités d’essai 64
sévérités forfaitaires 13, 64
sévérités personnalisées 64
situation 26, 40
situations « en parallèle » 53
situations « en série » 53
solutions statiques et quasi-statiques 73
spécification 31, 55, 56, 117
spécification des chocs par un SRC 69
Spécification Technique de Besoin 12
spécifications 41
spectre de dommage par fatigue 24, 49
Spectre de dommage par fatigue 37
Spectre de réponse à risque de dépassement 34
spectre de réponse au choc 23, 49, 58, 109
Spectre de réponse au choc 33
spectre de réponse extrême 24, 49
Spectre de réponse extrême 33
SRC 56
SRE 55, 70, 105
SRX 55
STANAG 4370 16, 30
stationnaire 40, 49
stationnaires 39
stationnarité 115
STB 124
surtension 24, 110
Synthèse 49
Synthèse de plusieurs situations 53
Synthèse des événements 50
système linéaire à un degré de liberté 31
système multi axial 71

T
table d’essais 71
triaxial 72
V

valeur b 77
valeur efficace 115
valeur moyenne 41
variabilité 40, 41, 49
variabilité du matériau 63

Norme Défense
© DGA 2009 – Tous droits réservés
variables aléatoires ... 43
variance ... 67
vérrins hydrauliques .. 74
vibration aléatoire .. 56
vibrations aléatoires ... 19, 49, 70
vibrations non stationnaires .. 119

W

Weibull .. 41, 43
FIGURES

Figure 2.1: Exemple d'enveloppe de DSP ... 19
Figure 4.1 : Partie traitement du signal de l'AGM .. 29
Figure 4.2: Partie traitement du signal de l'AGM .. 29
Figure 5.1:Système à 1 DDL ... 33
Figure 5.2:Rapport SRX/SRE .. 35
Figure 5.3:SRC d'un choc comparé au SRE et au SRX d'une vibration aléatoire calculée pour un risque de 1% et 99% ... 36
Figure 5.5:Probabilité de défaillance par interaction LN/LN 42
Figure 5.6:Schéma de synthèse pour chaque événement .. 49
Figure 5.7:Exemple d'une situation ... 50
Figure 5.8: Exemple de synthèse des événements .. 51
Figure 5.9: Schéma de synthèse des vibrations et chocs .. 51
Figure 5.10: Situations en série .. 52
Figure 5.11:Traitement des situations en parallèle .. 52
Figure 5.12:Processus de validation de la spécification .. 52
Figure 5.13:SDF du profil de vie et de la spécification .. 54
Figure 5.14: Réduction acceptable de la durée ... 55
Figure 5.15: Facteur d'exagération trop importante: augmenter la durée d'essai 55
Figure 5.16: La réduction de durée présente toujours un risque 56
Figure 5.17: Essai de durée trop grande .. 56
Figure 5.18:Choc étudié, appliqué 20 000 fois ... 58
Figure 5.19: SDF des 20 000 chocs et de la vibration aléatoire équivalente pour Q = 10 ... 58
Figure 5.20: SDF des 20 000 chocs et de la vibration aléatoire équivalente pour Q = 20 ... 59
Figure 5.21: SRC du choc de la figure 5.18 et SRE de la vibration aléatoire équivalente (Q = 10) ... 59
Figure 5.22: SRC du choc de la figure 5.18 et SRE de la vibration aléatoire équivalente (Q = 20) ... 60
Figure 5.23: DSP de la vibration aléatoire équivalente déterminée pour Q = 10 et pour Q = 20 ... 60
Figure 6.1 : calcul du dommage produit par une excitation horizontale en tout point d’un plan pour 2 choix de paramètre b dans le cas de l’emploi d’une loi de Basquin : b = 4 (gauche) et b = 8 (droite) 71
Figure 8.2: SRE d'une vibration aléatoire définie par sa DSP 106
Figure 8.3: Découpage de la DSP en segments de droite pour le calcul du déplacement efficace réponse 108
Figure 8.4: Calcul simplifié du SRE à partir d’une DSP .. 110
Figure 8.5: Exemple de DSP .. 110
Figure 8.6: Comparaison des SRE obtenus avec différentes approches 110
Figure 8.7: Exemple d’une DSP d’une vibration mesurée sur un avion 111
Figure 8.8:SRE d'une vibration mesurée sur un avion (Q=50) 112
Figure 8.9:SRE d'une vibration mesurée sur un avion (Q=5) 112
Figure 8.10: Vibration non stationnaire par variation de sa valeur efficace en fonction du temps ... 115
Figure 8.11: Variation en fonction du temps de la valeur efficace de la vibration non stationnaire de la figure 8.10 116
Figure 8.12: DSP de la vibration non stationnaire de la figure 8.10 116
Figure 8.13: Comparaison de la DSP de la vibration non stationnaire (figure 8.12) et de la DSP établie par équivalence des dommages à partir du signal en fonction du temps (figure 8.10) ... 117
Figure 8.14: SRE des DSP de la figure 8.13 ... 117
Figure 8.15: SDF des DSP de la figure 8.13 ... 118
Figure 8.16: Evolution valeur efficace / pression dynamique 119
Figure 8.17: Evolution DSP / pression dynamique .. 120
Figure 8.18: Histogramme – profils de vol ... 121
Figure 8.19: DSP de la vibration « camion » .. 136
Figure 8.20: DSP de la vibration « vol missile » .. 136
Figure 8.21: SDF de la spécification (5 heures) et des deux vibrations 136
Figure 8.22: SRE de la spécification (5 heures) et des deux vibrations 137
Figure 8.23: Comparaison des SDF des vibrations « camion » et « missile » 137

© DGA 2009 – Tous droits réservés
TABLEAUX

Tableau 1-1: Responsabilité dans l’application de la PCEM ... 15
Tableau 2-1: Réduction de la durée ... 22
Tableau 2-2: Réduction du nombre d’épreuve .. 22
Tableau 2-3: Comparaison des hypothèses ... 25
Tableau 5-1: Valeurs de β pour des probabilités de défaillance usuels .. 43
Tableau 7-1: Quelques valeurs de b [LAM80] ... 76
Tableau 7-2: Quelques valeurs de b [DEI72] ... 77
Tableau 8-1: Expressions analytiques des principales lois ... 81
Tableau 8-2: Détermination des données pour chaque phase d’un programme 124
Tableau 8-3 : Définition des phases d’un programme d’essai ... 125
Tableau 8-4: Aide au choix des sanctions .. 139
Tableau 10-1: Description et occurrences des situations ... 206
Tableau 10-2: Description des données associées à chaque situation .. 209
Tableau 10-3: Bilan des durée totales par situation .. 210
Tableau 10-4: Nombre de chocs par situations ... 220
Tableau 10-5: Valeurs efficaces des DSP initiales ... 235
Tableau 11-1 : Tableau des occurrences du système de mesure de la qualité de l’air 242
Tableau 11-2 : Agents d’environnement du système de mesure de la qualité de l’air 244